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ON SOLVING THE MAXIMUM BETWEENNESS PROBLEM

USING GENETIC ALGORITHMS

Aleksandar Savić

Abstract. In this paper a genetic algorithm (GA) is applied on Maximum
Betweennes Problem (MBP). The maximum of the objective function is
obtained by finding a permutation which satisfies a maximal number of
betweenness constraints. Every permutation considered is genetically coded
with an integer representation. Standard operators are used in the GA.
Instances in the experimental results are randomly generated. For smaller
dimensions, optimal solutions of MBP are obtained by total enumeration.
For those instances, the GA reached all optimal solutions except one. The
GA also obtained results for larger instances of up to 50 elements and 1000
triples. The running time of execution and finding optimal results is quite
short.

1. Introduction. The problem of maximum betweenness is well-known
and can be found in most compendiums of NP problems. The problem can be
summarised put as follows: Let there be a finite set A and a collection C of
triples (x, y, z) of distinct elements from A. Find a 1 : 1 function f : A → [1..|A|]
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such that the number of triples that satisfies either f(x) < f(y) < f(z) or
f(x) > f(y) > f(z) is maximal. In the late seventies Opatrny [14] showed that
finding n totally ordered elements that satisfy m such betweenness constraints is
NP-complete. Furthermore, the problem is MAX SNP complete, and for every
a > 47/48 finding a total order that satisfies at least a of the m constraints is
NP-hard (even if all the constraints are satisfiable) [1]. The origin of this problem
is in molecular biology and correct mapping of chromosomes which can be seen
in [2]. It is easy to see that the lower bound of the objective function must be
equal or greater than 1

3
of the constraints, because even if we order the elements

randomly, at least one-third of the betweenness constraints will be satisfied. Until
now, all considerations of this problem were purely theoretical [5, 6, 8]. Because
of all this, it was of interest to try an application of some metaheuristic on this
problem, especially in view that, in general, the problem becomes NP-hard.

2. Mathematical model. In MBP the given set A is finite. Because
of this, every element of A can be denoted with {ai} i = 1, . . . , n, where n = |A|.
Thus in the finite set A a linear ordering is introduced so that now it is known
which element is the first, the second and so on, until the last. Thus the MBP
problem is to find a 1 : 1 function f : {a1, a2, . . . , an} → [1..|A|]. This implies that
it is enough to find a 1 : 1 function f : {1, 2, . . . , n} → {1, 2, . . . , n}. Any 1 : 1
function from a finite set to the same finite set is actually a permutation of that
finite set. In conclusion, it is enough to find a permutation p of the set 1, 2, . . . , n
which has a maximal number of satisfied betweenness constraints. In this paper
finding such number is considered by using the genetic algorithm (GA).

3. Proposed GA method. In recent times metaheuristics have started
to play a major role in solving problems whose solving couldn’t even be considered
a decade ago because of the computational time and resources. Now with meta-
heuristics researchers can handle even the hardest NP-hard problems. Among
the more well-known metaheuristics are genetic algorithms (GA). As their name
suggests, they have roots in biology and real genetics. GA emulate nature in the
manner that they are stohastic methods for finding solutions of various problems
similar to nature’s finding answers to environmental problems. As nature, GA
works with individuals which constitute a population. And also, as in nature, GA
works to find individuals better suited to cope with the problem. These better
individuals are allowed to transfer their good qualities to the next generations of
individuals. This is done through genetic operators of crossover and mutation.
Deciding which individuals will pass their good qualities in GA is done by eval-
uating a fitness function. The betterment of individuals is iteratively repeated
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until the optimum of fitness function is achieved or some other stop criterion.
The field of applications of GAs in recent years has grown vast and can’t be
covered in this paper’s scope. Some descriptions can be found in [13]. Extensive
computational experience on various optimization problems shows that GA often
produces high-quality solutions in a reasonable time. Some recent applications
are: hub location [10], metric dimension of graphs [11], traveling purchase [7],
multiprocessor open shop [12], order acceptance [15] and airline crew-pairing and
rostering [16].

The encoding of individuals in this paper is integer. The genetic code in
this case has n−1 elements. Since the i-th element of the gene should be between
0 and n− i− 1 it is obtained by division by mod(n− i). If the gene has the value
q in position m then the mth element of the permutation will be obtained as the
(q + 1)-th element from the line of unused elements. Obtaining the nth element
of the permutation is unequivocal because there is only one element left unused.

For example, let n = 4, then gene 120 generates permutation

(

1 2 3 4
2 4 1 3

)

.

The number 1 in the gene denotes that the first element of permutation should
be the second element of 1234, which is 2. The number 2 in the gene denotes that
the second element of the permutation should be the third element of 134, which
is 4. The number 0 in the gene means that the third element in the permutation
should be the first element from 13, which is 1. The last element is unique, that
is the only element which is left over and that is 3. Similarly gene 301 generates

permutation

(

1 2 3 4
4 1 3 2

)

.

The advantage of this method is that all individuals are feasible. Crossover
and mutation operators will again give a feasible individual because it will again
be a permutation. The disadvantage is that with the crossover operator in the
next generation from two numbers in parent permutations it is not certain that
both numbers will figure in descendant permutation.

Let us consider two genes from the previous example. They are 120 and
301. In this paper one point crossover operator is used which means that the first
numbers in the genes will not be exchanged. As a result of the crossover operator
from parent genes 120 and 301 the descendant genes are 101 and 320. This implies

that from permutations

(

1 2 3 4
2 4 1 3

)

and

(

1 2 3 4
4 1 3 2

)

, two descendant

permutations are obtained, which are

(

1 2 3 4
2 1 4 3

)

and

(

1 2 3 4
4 3 1 2

)

. As

can be seen in the second position the descendant permutations have numbers 1
and 3 though their parents have numbers 4 and 1.
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The most important parts of the proposed GA are: Crossover and Muta-
tion, Selection and Fitness Function. In the following text their function and use
will be explained in detail.

In the population, as in nature, we differentiate elite and non-elite individ-
uals. Their treatment with GA is accordingly also different. All elite individuals,
their number being Nelite, are automatically passed to the next generation. All
non-elite individuals, their number being Nnnel = Npop − Nelite, are subject to
genetic operators. This differentiation reduces computational time because eval-
uation of objective function in elite individuals does not change from generation
to generation and needs to be calculated only once, in the first generation.

The fitness function find is responsible for deciding which individual is
fit to continue in evolution and which is not. Its values are computed by scaling
the objective values objind of all individuals into the interval [0,1], so that the
best suitable individual indmax gets the value 1 and the worst indmin gets 0.

Explicitly, find =
objindmin

− objind

objindmin
− objindmax

. After evaluating the objective function

of all individuals in the generation and accordingly calculating the values of the
fitness function, the individuals are arranged in non-increasing order by their best
fitness: f1 ≥ f2 ≥ · · · ≥ fNpop

, where Npop is the number of individuals in the
population.

After obtaining the values of the fitness function, two cases arise which
must be considered. First, the number of individuals with the same objective
function but different genetic code must be limited by some constant Nrv. This
is done so that other genetic material with different potential can stay in the
genetic pool. To obtain this, the fitness of all individuals with the same value
of the objective function but different genetic material will be set to 0 except
the first Nrv. Also, to avoid unwanted domination, individuals with the same
genetic code in population must be avoided, and their fitness is set to 0 for all
individuals, except the first one.

After this we decide by some criterion which individuals are elite and
which are not. Non-elite individuals are now subject to selection for continuation
of their good qualities.

Selection of non-elite individuals is done through tournaments. A number
of individuals set a priori to participate in the tournament is randomly chosen.
This a priori number is called tournament size. The purpose of the tournament
is to allow its winner to pass in to the next generation. The winner of the
tournament is the individual with the highest value of the objective function. To
ensure that populations do not shrink in size, the number of tournaments is equal
to the number of non-elite individuals Nnnel, so that exactly Nnnel parents can
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be chosen for crossover. It is allowed for the same individual from the current
generation to participate in more than one tournament.

In the standard tournament selection, the tournament size is integer,
which can hinder the efficiency of the algorithm. To avoid this problem, the
implementation of the selection is improved with a tournament selection opera-
tor, Fine-grained tournament selection – FGTS [4]. Here, the tournament size is
a real parameter Ftour, which represents the preferable average tournament size.
Now, there are two types of tournaments. One is held k1 times, with tournament
size ⌊Ftour⌋, and the other is held k2 times, with tournament size ⌈Ftour⌉. Hence

Ftour ≈
k1 · ⌊Ftour⌋ + k2 · ⌈Ftour⌉

Nnnel

.

An adequate ratio of the number of elite and the number of non-elite indi-
viduals is necessary to achieve the most satisfactory results of GA. For example,
for Npop = 150 the adequate proportion is Nelite = 100 and Nnnel = 50. The
parameters k1 and k2 in FGTS which determine the tournament size are 30 and
20, respectively. Also, for Npop = 150 the adequate maximum of individuals with
the same fitness is Nrv = 40.

FGTS performs best with the value of Ftour set to 5.4, as can be seen in
[4]. The same value is used in this work because the numerical and statistical
data presented here are exceptional. For detailed information about FGTS see
[4].

After selection of non-elite individuals, these individuals can be processed
by the crossover operator. They are now randomly paired in ⌊Nnnel/2⌋ pairs.
The intention of the GA algorithm through its crossover operator is that two
selected individuals exchange genes and produce offspring which will have im-
proved qualities and especially fitness function than the parent individuals. In
every crossover two offsprings are produced which will replace their parents in
the next generation. In this paper a standard one-point crossover operator is
used. These standard operators exchange whole genes between the genetic codes
of the parents to produce offspring. The probability of realization of the crossover
operator is 85%. This means that approximately 85% of the pairs of individuals
will exchange genes.

For the purposes of this paper in the genetic algorithm simple mutation
operator is used. The direct application of this operator changes a randomly
selected gene with some mutation rate. Also, in the operator is installed a mod-
ification for dealing with problems of frozen genes. Frozen genes are those genes
that are in a certain position in all individuals in the population. They can’t
be changed with selection or a crossover operator because they are widespread
through all population. The existence of frozen genes reduces the search space
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and increases the possibility of premature convergence. For example, if there are
q frozen genes in the population, then the search space will be q! times smaller.

The modification of the simple mutation operator in GA is that the muta-
tion rate is increased only on frozen genes. To implement this for each generation
it must be determined which genes are frozen. Then the mutation rate for these
genes is increased. For the proposed GA in this paper the increased mutation
rate for frozen genes is 2.5 timesgreater than the mutation rate on unfrozen genes.

The initialization of GA is random. This guaranties the most heteroge-
neous and diversified genetic pool of population in the first generation.

Finally, for improved performance of the proposed GA a caching tech-
nique is implemented. The main idea is to avoid evaluation of the objective
function for individuals with the same genetic code. The values of the objective
function that are already computed are stored by the least recently used (LRU)
caching technique into the hash-queue data structure. Now, if a new individual
has the same genetic code as some old one, the value of his objective function
is not computed, but found in cache memory. This results in significant time
savings. The limitation for the already calculated values of objective function in
this implementation is 5000. If the cache memory is full then we remove the least
recently used cash memory block. Detailed information about caching GA can
be found in [9].

4. Experimental results. All computations were executed on a 2.8
GHz PC computer with 2 Gb RAM under Windows. The genetic algorithm
was coded in the C programming language. For experimental testings, in this
paper, randomly generated instances were used. The names of instances reflects
the dimension of the problem, for example mbp-11-100 indicates that set A has
11 elements and that collection C has 100 triples from set A. These instances
include different numbers of elements in set A (N = 10, 11, 12, 15, 20, 30, 50)
and different numbers of triples in C (ranging from 20 to 1000).

Instances are generated on the following principles. An apriori number
of elements of A (n) and number of triples (nt) in collection C are selected.
After this, a variation of 3 elements from set {1, . . . , n}, where elements could
not reoccur, was generated randomly. After generating a triple, it was checked
if that triple was already in the collection of generated triples C ′. If it wasn’t,
the triple would be included in C ′ and the process would be continued until the
number of generated triples was equal to the a priori selected number nt and
C ′ = C.

In order to check GA, smaller instances were solved by Total Enumeration.
To do this, it was necessary to generate all permutations of the set {1, . . . , n} and



On solving the maximum betweenness problem . . . 305

after that to find which permutations satisfies a maximum number of between-
ness constraints (p(x) < p(y) < p(z) ∨ p(x) > p(y) > p(z)) for triples (x, y, z)
from collection C. For any specific permutation it wasn’t time-consuming to
check how many betweenness constraints were satisfied but the number of per-
mutations grows rapidly with the increase of n. Already for n = 12 the number
of permutations is 12! = 479001600, so, Total Enumeration solved only those
instances where the number of elements of the set A was smaller or equal to
12. The results obtained by Total Enumeration are given in Table 1. The first
column contains running times and second contains optimal solutions.

Table 1: Total Enumeraton results on MBP instances

Instance name ttot sol
mbp 10 100 6.359 50.000000
mbp 10 20 2.234 16.000000
mbp 10 50 3.671 29.000000
mbp 11 100 72.625 55.000000
mbp 11 20 26.203 14.000000
mbp 11 50 41.171 33.000000
mbp 12 100 861.000 56.000000
mbp 12 20 331.156 17.000000
mbp 12 50 520.125 33.000000

The finishing criterion of GA is the maximal number of generations Ngen

= 1000. The algorithm also stops if the best individual or the best objective
value remains unchanged through Nrep = 500 successive generations. Since the
results of GA are nondeterministic, the GA was run 20 times on each instance.

Table 2 summarizes the GA results on these instances. In the first column
the names of the instances are given. The instance’s name carries information
about the number of elements in set A and the number of triples M in collection
C. For example, the instance mbp 11 100 is an instance which has N = 11
elements in set A and M = 100 triples in collection C.

The best GA values GAsol are given in the last column. The mark opt
is given if an optimal solution is reached and there is no difference between that
solution and solution obtained by Total Enumeration.

The average times needed to detect the best GA values are given in column
t. The solution quality in all 20 executions is evaluated as a percentage gap named
agap, with respect to the optimal solution solopt, with standard deviation σ of

the average gap. A percentage gap agap is defined as agap =
1

20

20
∑

i=1

gapi, where
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gapi = 100 ∗
GAi − GAbest

GAbest

and GAi represents the GA solution obtained in the

ith run, while σ is the standard deviation of gapi, i = 1, 2, . . . , 20, obtained by

formula σ =

√

1

20

20
∑

i=1

(gapi − agap)2. The next two columns are related to the

caching: eval represents the average number of evaluations, while cache displays
savings (in percent) achieved by using caching technique.

Table 2: GA results on MBP smaller instances

Instance name ttot t agap σ eval cache GA opt
(opt) (sec) (sec) (%) sol

mbp 10 100 0.652 0.160 2.417 1.018 12302.1 59.9 50.000000 opt
mbp 10 20 0.194 0.011 1.563 2.777 10264.4 61.7 16.000000 opt
mbp 10 50 0.195 0.007 0.172 0.771 10444.1 60.5 29.000000 opt
mbp 11 100 0.243 0.042 2.636 2.669 12056.5 59.8 55.000000 opt
mbp 11 20 0.200 0.008 2.500 3.495 12022.4 54.1 14.000000 opt
mbp 11 50 0.214 0.018 2.273 1.346 11305.5 58.5 33.000000 opt
mbp 12 100 0.246 0.043 3.125 3.219 11377.8 62.1 56.000000 opt
mbp 12 20 0.197 0.014 2.353 2.957 11008.5 59.0 17.000000 opt
mbp 12 50 0.228 0.032 3.030 1.390 10994.8 62.5 33.000000

In Table 3 are given results obtained by GA on larger instances. Because
Total Enumeration could not reach solutions for these larger instances there is
no opt remark next to the results. Other notations are the same as in Table 2.

As can be seen in Tables 2 and 3, the running time of GA on all instances
is really small. The average execution on the largest instance is smaller than 2.5
seconds.

Comparing Tables 1 and 2 it can be seen that results of GA algorithms
reached opt solution in all instances except one. In all other instances GA al-
gorithm reached the optimum obtained by Total Enumeration. For all instances
the working time of Total Enumeration is much longer than the running time of
GA. The running time of GA in these smaller instances is shorter than half a
second.

5. Conclusions. The GA metaheuristic for solving MBP is presented
in this paper. An integer representation of the necessary permutations was used.
Fine-grained tournament selection refinement was applied in the selection process.
One-point crossover and simple mutation with frozen genes were used. Compu-
tational performance of GA was improved by caching. For almost all instances
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Table 3: GA results on larger MBP instances

Instance name ttot t agap σ eval cache GA
(opt) (sec) (sec) (%) sol

mbp 15 200 0.289 0.047 2.048 2.458 13900.3 52.8 105.000000
mbp 15 30 0.217 0.025 9.000 3.866 13338.8 52.9 25.000000
mbp 15 70 0.231 0.026 4.457 2.053 12962.0 54.0 46.000000
mbp 20 100 0.398 0.118 4.462 2.636 22190.9 36.3 65.000000
mbp 20 200 0.400 0.079 1.239 0.926 19494.4 36.4 113.000000
mbp 20 40 0.340 0.073 10.278 5.635 20126.8 35.9 36.000000
mbp 30 150 0.627 0.220 6.225 2.741 25676.3 31.6 102.000000
mbp 30 300 0.749 0.307 4.798 2.351 26433.8 31.8 173.000000
mbp 30 60 0.538 0.145 6.373 4.214 23549.3 30.9 51.000000
mbp 50 100 1.147 0.458 7.143 4.124 31936.7 18.4 84.000000
mbp 50 1000 2.169 1.391 4.187 2.140 37277.3 19.2 504.000000
mbp 50 200 1.385 0.766 5.643 3.268 36507.5 18.5 140.000000
mbp 50 400 1.535 0.793 4.104 2.622 35736.3 18.8 240.000000

(all but one) GA calculates solutions that match the optimal ones obtained by
Total Enumeration. GA results were obtained in very short running time.

Based on the results, GA has the potential to be a useful metaheuris-
tic for solving other similar problems. The parallelization of the GA and its
hybridization with exact methods are also promising directions of future work.
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