
Serdica J. Computing 3 (2009), 179–204

REASONING METHODS FOR DESIGNING AND

SURVEYING RELATIONSHIPS DESCRIBED BY SETS OF

FUNCTIONAL CONSTRAINTS∗

János Demetrovics, András Molnár, Bernhard Thalheim

Abstract. Current methods of database schema design are usually based
on modeling the real world as entity (or object) classes with relationships
among them. Properties of relationships can be described by semantical
database constraints. One of them is functional dependency, which has a
key role in traditional database design. The three basic types of binary rela-
tionships that can be described by functional dependencies are one-to-one,
one-to-many and many-to-many. They can also be expressed by common
graphical languages like the Entity-Relationship (ER) graph. However, rela-
tionships defined among more than two entity classes (ternary, quaternary,
etc.) are usually not investigated and the common graphical tools lack ex-
pressive power regarding them. We show that the variety of relationship
types is rich for higher arities and propose a simplified formalism for func-
tional constraints as well as graphical and spreadsheet reasoning methods for
handling sets of functional constraints that also help by relationship design.

ACM Computing Classification System (1998): E.1.
Key words: Database schema, functional dependency, Entity-Relationship model, functional

constraint, reasoning method.
∗This work is supported by the Hungarian Scientific Research Fund (OTKA), grant T042706.



180 János Demetrovics, András Molnár, Bernhard Thalheim

1. Introduction

1.1. Relations, relationships and constraints. In relational data-
base theory, the syntactical part of a database schema consists of finitely many
relational schemata, and each relation schema has one or more (finitely many)
attributes. It describes the structure of the data. The actual data contained in a
database instance consist of relational tables for each relation schema such that
the attributes correspond to columns of the table. The schema is extended by
semantical integrity constraints to ensure consistency of the database by specify-
ing which instances are considered as valid databases. The database management
system checks that the prescribed constraints are not violated by any transaction.

Functional dependencies are probably the most known database con-
straints. For two sets of attributes X,Y of a relational schema R, X → Y states
that only those tables are treated as valid instances of R that contain no pair of
rows which have the same values in the columns of attributes X but differ in any
of the columns of attributes Y , i. e., the values of X uniquely determine the values
of Y . For instance, in an address table of schema (City, ZIP, Street,HouseNr),
the ZIP code determines City so there is a functional dependency ZIP → City
between them. A key is a set of attributes that functionally determines all at-
tributes of the relation schema. It is an important task during schema design
to determine which of the possible functional dependencies are valid, in order
to avoid update anomalies and find a suitable decomposition of the relational
schemata. Specified constraints are not independent of each other: one or more
constraints may logically imply other constraints while some possible constraints
remain independent. An axiomatization of functional constraints consists of ax-
ioms and rules that support reasoning on constraints.

The notion of functional dependencies was introduced in [2] for the re-
lational database model [13], mainly to provide a way for specification of the
properties of valid, acceptable instances of a relational schema. Since then, the
theory of functional dependencies has been well developed by investigating prop-
erties and representations, applied for key finding, decompositions, normal forms,
etc. Classical database design is based on a step-wise extension of the constraint
set and on a consideration of constraint sets through generation by tools. Nowa-
days, dependency theory at schema design is usually applied for determining keys
and decomposing schemata into normal forms (e. g., [5, 6, 4, 7]).

The Entity-Relationship (ER) model (e. g., [11, 12, 10, 24]) is the most
widely used graphical tool for database schema design. The design procedure
is based on identification of entity classes and relationships among them. En-
tity classes are represented as rectangles and relationship classes as diamonds



Reasoning Methods for Sets of Functional Constraints 181

Person Place   was
born in

Person Place

Person Place   has
visited

  is the
mayor of

Fig. 1. Three basic types of binary relationships in the Entity-Relationship model
(arrowheads representing cardinality restrictions similarly to functional dependencies)

connected to the participating entity classes. Relationships are usually binary,
ie. two entity classes participate in the relationship. Relationships of higher ar-
ity (e. g., ternary, quaternary) are those that have more than two entity classes
participating in them. They are also allowed and should be used whenever con-
venient.

The model allows specification of cardinalities of entities participating in
relationships. Since we are focusing on relationships that can be described by
sets of functional dependencies, the only possible cardinalities we consider are
‘at most one’, usually denoted by (0, 1), and ‘any’ (0, n). It refers to how many
times an entity can participate in a particular relationship (whether it can relate
to more than one entity of the other class or not). A simplified notation is when
an arrowhead is used on the opposite side to represent a (0, 1) cardinality. It
harmonizes with the functional dependency notation: an entity that participates
only once uniquely determines the entity it is related to via the relationship.

The three basic types of binary relationships that can also be expressed by
functional constraints are many-to-many, many-to-one and one-to-one. Figure 1
shows an example for each type. In the first relationship, any person can have
visited any number of places (villages/towns/cities) and a place can have been
visited by an unrestricted number of people. It is a many-to-many relationship
that can be specified by the empty set of functional dependencies. In the second
case, a person was born at exactly one place but several persons may have been
born at the same place and so it is a many-to-one relationship corresponding to
the singleton functional dependency set {Person → Place}. In the third case,
we assume a place has currently one mayor and a person can be the mayor of
only one place so there is a one-to-one relationship between them: {Person →
Place, P lace → Person}. Note that if we allowed a person to be the mayor of



182 János Demetrovics, András Molnár, Bernhard Thalheim

more than one place at the same time, we would get a one-to-many relationship
as a fourth case. However, it is basically of the same type as many-to-one if we
change the roles of the two participating entity classes.

A relational database schema from an ER graph can be generated auto-
matically: entity and relationship classes are transformed to relational schemata
with attributes and integrity constraints. If relationship types are specified ex-
actly in the above terms, this transformation process can optimize the generated
schema by eliminating redundancies (schema normalization).

The general entity-relationship model allows more sophisticated speci-
fication of cardinalities, such as optionality and exact numbers instead of the
notation n. In the above examples, one may specify that a place must have a
mayor. However, inclusion dependencies would be needed in addition to func-
tional dependencies to describe that an entity must participate in a relationship
(e. g., for a (1, n) or (1, 1) cardinality). Therefore, optionality is not considered by
us as an aspect of relationship type. Furthermore, the general entity-relationship
language allows specification of cardinalities like (2, 3) (at least 2, at most 3) that
are not captured by functional constraints. We will show in this paper that the
variety of relationship types is already rich for higher arities if we consider only
the simple case of relationships described by sets of functional dependencies.

Consider the two examples on Figure 2. In the first case, each person
should have one birth date and place. In the second case, however, each person
can have moved several times but only once on a day and only once to a specific

Person Place  moved

Person Place

     to/on

  in/on
   was born

Date

Date

Fig. 2. Ambiguity of ternary relationship specification in the
Entity-Relationship model



Reasoning Methods for Sets of Functional Constraints 183

place (the example assumes nobody can move back to a previous place—or if so,
previous dates of moves to the same place are not stored). It is clear that the
structure of the two ternary relationships differs essentially, which is not captured
by the entity–relationship notation and other common graphical tools1. The first
case has the functional dependency set {Person → Date, Person → Place} while
the second has {PersonP lace → Date, PersonDate → Place}. In a later phase
of schema design, they can be decomposed to binary relationships. However, the
binarization of relationships usually needs introducing extra relationship or even
entity classes (e. g., as in the second case of our example). While binarization
can be useful in some cases, it generally complicates the graph notation and can
make the schema less natural and perspicuous already at a relatively early stage
of the database design process.

Since designing a relationship of higher arity can be incomplete or am-
biguous, and some languages don’t even allow specification of non-binary rela-
tionships, binarization is often performed even if higher arity relationships would
provide a more suitable model. In fact, the complexity of this kind of relationships
can be high and different types of ternary, quaternary relationships are not char-
acterized (as opposed to the well-known three types of binary cases). Complete
and unambigous specification can be achieved by recalling database constraints,
and relationship construction can be achieved through relation schema design. To
achieve this, the database developer must master acquisition of semantics. The
traditional formal notation considers dependencies one-by-one, including triv-
ial and redundant ones. The implication is not effective enough in most cases.
There is usually a strong inter-dependence among constraints that is not visual-
ized. All these lead to inconvenience in using the formalism with the traditional
axiomatization. Therefore, simple and sophisticated means of representation and
reasoning for constraint sets are needed.

In [20] we proposed a novel approach for graphical representation of sets
of functional dependencies for small relation schemata that supports reasoning.
In this paper we give extended methods for graphical reasoning using this rep-
resentation, and introduce an alternative, spreadsheet-based representation of
constraint sets. More details on the graphical and spreadsheet representations
can be found in our technical report [19].

The proposal of a graphical representation of constraint sets provides a
possible solution of the problem of defining a pragmatical approach that allows

1Instead of the arrows we can use different versions of the original cardinality constraint
notation as participation or look-through constraints [24]. However, neither of them is capable
to describe precisely all the possible ternary relationship structures.



184 János Demetrovics, András Molnár, Bernhard Thalheim

simple representation of and reasoning on database constraints. The constraint
acquisition method below can be refined and adopted into this framework. Solv-
ing the problem is crucial since typical algorithms such as normalization algo-
rithms can only generate a correct result if the specification is complete, i. e.,
each possible constraint is declared as either valid or invalid in a consistent, non-
contradictory way.

1.2. Functional constraints, excluded functional constraints and
their dimension. We use the traditional functional dependency notation with
some restrictions. Beside functional dependencies (FDs), we use excluded func-
tional constraints (also called negated functional dependencies) as well: e. g.,
X /−→Y states that the functional dependency X −→ Y is not valid2.

In our notation, a trivial (redundant) constraint (a functional dependency
or an excluded functional constraint) is a constraint with at least one attribute
of its left-hand side and right-hand side in common or with the empty set as
its right-hand side. Furthermore, a canonical (singleton) functional dependency
or a singleton excluded functional constraint has exactly one attribute on its
right-hand side.

Our graphical and spreadsheet representations deal with non-trivial canon-
ical functional dependencies and non-trivial singleton excluded functional con-
straints only. Restriction means we explicitly disallow trivial (redundant) and
non-singleton constraints and treat them as syntactically invalid. We will show
in Section 3 (see also [19]) that this leads to simple and effective representation
of constraint sets.

Some constraints logically imply others. If a constraint X → A holds in
each possible schema where a set of constraints F holds, this is denoted by F �

X → A. Implication can be checked given an axiomatization. If an implication
can be derived formally using an axiomatization A, this is denoted by F ⊢A X →
A. A is sound if each derivation is correct (� follows from ⊢A) and is complete if
each logical implication can be derived using A (ie. � implies ⊢A). The notation
is extended to negated constraints in a straightforward way. We will show that
restriction to non-trivial and singleton constraints can be achieved without losing
relevant deductive power.

In most of the cases, we focus on closed sets of functional dependencies.
A finite (singleton, non-trivial) constraint set F is closed iff F+ = F where F+

2Negated functional dependencies are interpreted by weak semantics, i. e., a negated depen-
dency is allowed to be valid in certain instances but this is not the general case for instances of
the schema.



Reasoning Methods for Sets of Functional Constraints 185

is the (singleton, non-trivial) closure of F, i. e., contains all implied singleton,
non-trivial constraints.

Dimension of a constraint is simply the size of its left-hand side, i. e., the
number of attributes on its left-hand side.

For a single attribute A, given a set of functional dependencies F ⊂ D
+
c ,

the dimension of A is denoted by [A]F (or simply [A]) and defined as

[A]F
def
= min

X→A∈F+
|X|

This definition is extended with [A]F
def
= ∞ for the case when no X → A exists

in F+. The dimensions of attributes classify the sets of functional dependencies.

1.3. Constraint set development. The main task is to determine the
validity of all possible functional dependencies given an initial set, i. e., to get
the closure of the constraint set. This constraint acquisition is usually performed
by a step-wise extension of the constraint set. The approach is based on the
separation of constraints into:

The set of valid functional dependencies Σ1: All dependencies that are
known to be valid and all those that can be implied from the set of valid
and excluded functional dependencies.

The set of excluded functional dependencies Σ0: All dependencies that
are known to be invalid and all those that are invalid and can be implied
from the set of valid and excluded functional dependencies.

This pragmatical approach leads to the following simple elicitation algorithm
illustrated by Figure 3.

1. Basic step: Design obvious constraints.

2. Recursion step: Repeat until the constraint sets Σ0 and Σ1 do not change.

Unknown
validity

Σ0

Σ1

Unknown
validity

Σ0

Σ1

Unknown
validity

Σ0

Σ1

Σ0

Σ1

... ...

Initial step Intermediate steps Final step

Fig. 3. Constraint Acquisition Process



186 János Demetrovics, András Molnár, Bernhard Thalheim

• Find a functional dependency α that is neither in Σ1 nor in Σ0.
If α is valid then add α to Σ1. If α is invalid then add α to Σ0.

• Generate the logical closures of Σ0 and Σ1.

The number of constraints may however be exponential in the number
of attributes [17]. Therefore the specification of the complete set of functional
dependencies may be a task that is infeasible. This problem is closely related
to another well-known combinatoric problem presented during MFDBS’87 [23],
still only partially solved: What is the size of sets of independent functional
dependencies for an n-ary relation schema?

The above constraint acquisition process however turns out to be too
static in some cases. The tasks of a designer may include generating closures of
attribute sets or determining whether a specific functional dependency holds or
not, even before generating the closure. Some of these methods are adaptations
of well-known algorithms for our representation systems, while others are based
on an implication system especially designed for simple handling of constraints.
These methods also point towards an interactive software tool to be implemented
for supporting design of schemata (relationships) as well as surveying types of
possible schemata.

The outline of the paper is as follows: Section 2 introduces our proposal for
spreadsheet and graphical representations of functional constraint sets and also
discusses the number of different sets. Section 3 gives a simple axiomatization
for singleton, nontrivial constraints, demonstrates the usage of its rules in terms
of the graphical and spreadsheet representations for reasoning on constraint sets,
and finally sketches some auxilliary methods that can take further advantage of
our representations during database schema design.

2. Sets of functional dependencies and their representations.

2.1. The spreadsheet notation of sets of functional dependencies.
A set of functional dependencies over a specific set of attributes can be repre-
sented as a row of a table where columns correspond to the possible functional
dependencies and a digit 1 or 0 in a column indicates the presence or absence
of the corresponding dependency in the set. This representation is a brief but
still convenient way to present a larger amount of sets and can also be used for
reasoning on a particular set of constraints.

Since our main focus is on schema design and relationship types, we ignore
cases with zero-dimensional constraints (specifying constant attributes) while pre-
senting sets of dependencies. Moreover, we treat equivalent sets as one single case



Reasoning Methods for Sets of Functional Constraints 187

(for two equivalent sets there exists a permutation of attributes transforming one
set into another).

2.2. Sets of functional dependencies for small relation schemata.
As illustrated in the Introduction, three basic relationship types exist for the
binary case: one-to-one, one-to-many, many-to-many. If we fix the role of the
two components, the many-to-one version must be included additionally. These
relationship types can be described by sets of functional dependencies, treating
components as attributes of a relational schema. With the generalization of this
concept to higher arities, the different possible types of relationships correspond
to the different closed sets of functional dependencies. Reasoning becomes a
crucial point since the constraints used for specifying the relationship are not
mutually independent. In the following, we present the number of different cases
for small arities. Using a PROLOG program based on the simplified formalism
and the axiomatization to be discussed in Section 3 we have generated all possible
sets up to 5 attributes.

The Ternary Case. The total number of closed sets given three fixed
attributes is 45. If permutation of attributes does not matter, sets equivalent up
to permutation of attributes are treated as one single case with a representative

Case BC AC AB B A C A C B Generating Dimension
# → → → → → → → → → system of attributes

A B C A B A C B C of functional dependencies [A] [B] [C]

#0 0 0 0 0 0 0 0 0 0 ∅ ∞ ∞ ∞

#1 1 0 0 1 0 0 0 0 0 {B → A} 1 ∞ ∞
#2 1 0 0 1 0 1 0 0 0 {B → A, C → A} 1 ∞ ∞

#3 1 1 0 0 0 1 0 1 0 {C → B, C → A} 1 1 ∞
#4 1 1 0 1 0 1 0 1 0 {C → B, B → A} 1 1 ∞
#5 1 1 0 1 1 0 0 0 0 {A → B, B → A} 1 1 ∞
#6 1 1 0 1 1 1 0 1 0 {C → B, A → B, B → A} 1 1 ∞

#7 1 1 1 1 1 0 1 0 1 {A → C, A → B, B → A} 1 1 1

#8 1 1 1 1 1 1 1 1 1 {A → B, B → C, C → A} 1 1 1

#9 1 1 1 0 0 1 0 1 0 {AB → C, C → B, C → A} 1 1 2

#10 1 1 0 1 0 0 0 0 0 {AC → B, B → A} 1 2 ∞

#11 1 0 0 0 0 0 0 0 0 {BC → A} 2 ∞ ∞

#12 1 1 0 0 0 0 0 0 0 {BC → A, AC → B} 2 2 ∞

#13 1 1 1 0 0 0 0 0 0 {BC → A, AC → B, AB → C} 2 2 2

Table 1. The sets of functional dependencies for the ternary case, grouped by
dimensions of attributes



188 János Demetrovics, András Molnár, Bernhard Thalheim

set presented. We get the number of different types of ternary relationships which
is 14. Table 1 shows the spreadsheet representation of the sets with their gener-
ating systems and attribute dimensions indicated. The graphical presentation of
the sets can be found in Section 2.3. These sets were also presented in [9] but we
use a different numbering system based on the ordering of attribute dimensions.

Note that the dimension class ([A] = 1, [B] = 2, [C] = 2) is missing
since it is a contradictory case. It is easily verified that no valid set of functional
dependencies corresponds to this combination of attribute dimensions. If F were
such a set, [B] = 2 and [C] = 2 would imply AC → B, AB → C ∈ F and
no one-dimensional functional dependency would determine B or C. Similarly,
[A] = 1 would imply that a one-dimensional constraint determining A is in F.
Assume B → A ∈ F. Since {B → A, AB → C} � B → C, B → C ∈ F (F is a
closed set). This is a contradiction since B → C is a one-dimensional constraint
determining C and so [C] = 1 would hold. A similar contradiction with B arises
by assuming C → A ∈ F.

The case discussed above is the only contradictory one (up to permuta-
tion) for 3 attributes. For 4 attributes, 6 cases arise and for 5 attributes, 28
different contradictory dimension groups exist (up to permutation).

The Quaternary Case. Similarly to the ternary case, sets of functional
dependencies for 4 attributes can be presented in the tabular form grouped by
value combinations of attribute dimensions. The total number of sets is 2 271;
treating equivalent sets as one case we get 165 cases. We show cases of one
dimension group only, in Table 2. The complete listing can be found in in [19].

Due to space limitations, the binary representation forms a single column.
Grouped bits represent the presence or absence of dependencies in the following
order (from left to right): (BCD → A, ACD → B, ABD → C, ABC → D),

(BC → A, AC → B, AB → C), (BD → A, AD → B, AB → D),

(CD → A, AD → C, AC → D), (CD → B, BD → C, BC → D),

(B → A, A → B), (C → A, A → C), (D → A, A → D),

(C → B, B → C), (D → B, B → D), (D → C, C → D).

# Binary representation Generating system of functional dependencies

[A] = 1, [B] = 1, [C] = 2, [D] = 2

69 1111 100 010 110 101 00 10 00 00 10 00 {AD → C, BC → D, C → A,D → B}
70 1111 101 011 110 101 00 10 00 00 10 00 {BC → D, AB → C, C → A, D → B}
71 1111 110 110 011 011 11 00 00 00 00 00 {BD → C, BC → D, A → B, B → A}
72 1111 110 110 111 111 11 00 00 00 00 00 {CD → B, BD → C, BC → D, A → B, B → A}

Table 2. Four sets of functional dependencies for the quaternary case



Reasoning Methods for Sets of Functional Constraints 189

All sets of functional dependencies with five attributes may be represented
in a similar form.

Summary of the Number of Closed Sets. Denote by SDn the set
of closed sets of functional dependencies for a relation schema with n attributes
(with constant attributes disallowed). This corresponds to the different relation-
ship types for components with fixed role (asymmetric types counted more than
once). Furthermore, let τ be the equivalence relation on these sets classifying
them into different types or cases (for two equivalent sets there exists a permu-
tation of attributes transforming one set to another). The number of different
classes (SDn/τ) exactly corresponds to the number of relationship types if the
attributes do not have a fixed role (an asymmetric relationship type is counted
only once). If we allow attributes to be stated as constants (which is, how-
ever not likely in schema design), it yields a larger set that is exactly the set
of Moore families [21] for n, denoted by SD0

0
n and its equivalence classes SD

0
n/τ .

For each n ∈ N
+,

∣

∣SD
0
n+1/τ

∣

∣ = |SDn+1/τ | +
∣

∣SD
0
n/τ

∣

∣ easily follows, as well as
∣

∣SD
0
n

∣

∣ =
∑

n

i=0

(

n

i

)

|SDi| where |SD0| = 1.

With these notations, Table 3 shows the number of different cases for
known arities and demonstrates the combinatorial of the search space. The first
five rows were computed by our PROLOG program [20, 19] and the third column
was also obtained by [22]. The number of Moore families for six elements was
presented in [21] and the first column can be calculated from that by the summa-
rization formula above. The number of different equivalence classes for the sixth
row is still unknown.

Although the number of different relationship types for n attributes is still
unsolved3 , the table shows that the complexity is high even for small arities. This
is not surprising from the point of view of constraint sets. However, most work
that considers non-binary relationships pays surprisingly little attention to this
complexity and some notations used in practice are ambiguous. Therefore, suit-
able tools are sought for a complete specification of a relationship with functional
dependencies.

2.3. The Triangular graphical representation and its generaliza-
tions. There have been several proposals (e. g., [3], [25] and [9]) for graphical
representation of sets of functional dependencies. Nevertheless, these graphical
notations have not made their way into practice and education. The main reason
for this failure is the complexity of the representation. We use a notation which

3Estimations exist, see [8, 18].



190 János Demetrovics, András Molnár, Bernhard Thalheim

n |SDn| |SDn/τ | |SD0
0

n
| |SD

0

n
/τ |

1 1 1 2 2
2 4 3 7 5
3 45 14 61 19
4 2 271 165 2 480 184
5 1 373 701 14 480 1 385 552 14 664
6 75 965 474 236 ? 75 973 751 474 ?

Table 3. Number of closed sets of functional dependencies for n attributes. The column
printed in italics contains the number of basic relationship types of arity n.

reflects the validity of functional dependencies in a simpler and more understand-
able fashion for small attribute sets [20].

The Triangular Representation for the Ternary Case. A set of
functional constraints is represented by a diagram. Functional dependencies and
excluded constraints are indicated as nodes of geometrical figures shown on Figure
4. A circle denoting a constraint is always placed at the location of the attribute
on the right-hand side of the constraint.

{A, B} → {C} {A, C} → {B}

{B, C} → {A}

{B} → {C} {C} → {B}

{A} → {C}

{C} → {A}

{A} → {B}

{B} → {A}

C B

A

Fig. 4. Triangular representation scheme of sets of functional dependencies for
the ternary case

Figure 5 shows three examples of constraint sets represented by graphs.

We distinguish two kinds of functional dependencies for n = 3:

One-dimensional (singleton left sides): Functional dependencies of the
form A → B are represented by endpoints of binary edges (1D shapes).
The filled circle in the left-hand triangle of Figure 5 denotes such a de-



Reasoning Methods for Sets of Functional Constraints 191

Fig. 5. Examples of the triangular representation

pendency. Constraints such as A → BC can be decomposed to canonical
functional dependencies A → B and A → C.

Two-dimensional (two-element left sides): Functional dependencies with
two-element left-hand sides like AC → B cannot be decomposed. They
are represented in the triangle (2D shape) on the node relating their right-
hand side to the corner, such as the empty circle in the left-hand triangle
of Figure 5.

If attributes are allowed to be declared as constants, an extra node is
needed for each attribute as a placeholder for a zero-dimensional constraint re-
ferring to the attribute (eg. ∅ → A). Since we are discussing schema design, this
is largely irrelevant.

As shown in Figure 5, filled circles represent the basic (initial) dependen-
cies while empty circles denote implied dependencies. In the left triangle, the
circle of AC → B is empty because it is implied by A → B. The functional
dependencies A → B, B → C and their implied functional dependencies are
pictured in the middle triangle in a similar way.

We represent also candidates for excluded (negated) functional dependen-
cies by crossed circles in the same fashion for the case when we know that the
corresponding functional dependency is not valid in applications. For instance,
the negated functional dependency AC Y→ B and the implied negated functional
dependencies A Y→ B and C Y→ B are given in the right-hand picture of Figure ??.

Nodes without a circle or with a small circle correspond to unknown con-
straints. The specification of a constraint set is complete if all implied constraints
are denoted and each node is covered by either a circle or a crossed circle. Each
complete set can be actually viewed as a closed set of functional dependencies,
using the closed world assumption (everything that is not specified as valid is
treated as invalid).

Graphs of all different ternary cases of closed sets (relationship types
presented on Table 1) are shown in Figure 6.



192 János Demetrovics, András Molnár, Bernhard Thalheim

Fig. 6. All sets of functional dependencies in ternary relationship types



Reasoning Methods for Sets of Functional Constraints 193

Fig. 7. A tetrahedron as the 3D graphical representation for four attributes (dashed
lines indicate invisible edges from the front)

Higher-Arity Generalizations of the Triangular Representation.
Considering the triangular representation for the ternary case, it is viewed as a
triangle with its three edges repeated (or drawn separately). Each vertex of the
triangle as well as each endpoint of the (repeatedly or separately drawn) edges
corresponds to a placeholder of a constraint of the matching dimension (1D for
edge nodes and 2D for triangular nodes). It is straightforward that the qua-
ternary case contains four nested ternary cases with their one-dimensional parts
(edges) shared. Additionally, three-dimensional constraints can be represented
as vertices of a three-dimensional shape which is actually a tetrahedron. In this
way we get a representation in 3D space, where each node is a placeholder of
a functional dependency or an excluded constraint (see Figure 7). For better
visibility, separate edges are drawn outside the tetrahedron where possible.

Replacing the 3-dimensional tetrahedron with a square, another version
more suitable for 2-dimensional presentation can be constructed with the nested
4 triangles and 6 shared edges drawn inside of it and rearranged.

We have presented the quaternary cases of the dimension class ([A] =
[B] = 1, [C] = [D] = 2) in Table . They are presented in these graphical forms
in Figure 8 as an example.

This representation can be generalized to the case of 5 attributes. How-
ever, for more attributes, the graph becomes rather complex due to the combi-
natorical explosion. The more attributes (n) we have, the higher the dimension
(n−1) of the space is where a simpler and symmetric generalization of triangular
representation exists. Complexity can be handled by seeking possible decompo-
sitions or by looking at the appropriate translations of schemes ([14], [15], [16]).



194 János Demetrovics, András Molnár, Bernhard Thalheim

Fig. 8. The tetrahedral and quadratic graphical representations of sets with [A] = [B] =
1, [C] = [D] = 2 (numbers of sets refer to the spreadsheet representation presented in

Section 2.2)

3. Reasoning methods and algorithms.

3.1. Implication systems for functional constraints.

The extended armstrong implication system. Functional depen-
dencies are traditionally axiomatized by the Armstrong implication system [2, 18]
with its extended version for negated dependencies [24]:

Axiom

XY → Y

Rules

(1)
X −→ Y

XV W −→ Y V
(2)

X −→ Y, Y −→ Z

X −→ Z

(3)
X −→ Y,X /−→Z

Y /−→Z

(4)
X /−→Y

X /−→Y Z
(5)

XZ /−→Y Z

XZ /−→Y

(6)
X −→ Z,X /−→Y Z

X /−→Y
(7)

Y −→ Z,X /−→Z

X /−→Y



Reasoning Methods for Sets of Functional Constraints 195

However, this system has inherent redundancy by considering trivial and
non-singleton (right-sided) dependencies4. Its main drawback is that in some
cases one needs to use the axiom and derive trivial constraints in order to derive
a non-trivial target. It adds unnecessary complexity to the constraint implica-
tion, which leads to inconvenience for many designers in using the functional
dependency notation.

The desired syntactical restriction to nontrivial and singleton dependen-
cies is not compatible with these rules. The restriction can only work if there is
an alternative sound and complete axiomatization for the restricted syntax. We
present our set of rules that solve this problem in the following subsection.

The ST and PQRST implication systems. In the following rules,
Y denotes a set of attributes (allowed to be empty) and A,B,C are different
attributes not occurring in Y .

(S)
Y → B

Y C → B
(T )

Y → A, Y A → B

Y → B
(P )

Y C Y→ B

Y Y→ B

(Q)
Y → A, Y Y→ B

Y A Y→ B
(R)

Y A → B, Y Y→ B

Y Y→ A
(�) ¬(Y → B, Y Y→ B)

– The ST implication system for positive constraints contains rules (S) and
(T) and no axioms.

– The PQRST implication system for both negative and positive constraints
has all the presented rules and the symbolic axiom (�), which is used for
indicating contradiction.

These systems are proved as sound and complete for the appropriate universes
of dependencies [19]5. There is no need (nor any possibility) to derive trivial or
nonsingleton constraints in order to derive any implication. Moreover, seeking
for possible instantiations is more efficient compared to the Armstrong axioma-
tization because there is always only one attribute set in each rule and at most
two different attributes that must not occur in the set.

The U Implication System. The following pseudotransitivity rule
schema forms a sound and complete axiomatization for (singleton, non-trivial)

4A non-singleton functional dependency can be decomposed into singletons. A non-singleton
negated dependency, however, represents a disjunction. We do not consider such dependencies
since their relevance is usually not high and by using our implication system they are not needed
as intermediate results either (during derivation of any singleton constraint) [19].

5For contradictory cases, � can be derived.



196 János Demetrovics, András Molnár, Bernhard Thalheim

functional dependencies by itself. It allows a deduction with fewer steps than
by using the ST implication system. Consider the following rule. The letters
X and Y denote disjoint sets of attributes (allowed to be empty) while Ai’s
(i ∈ [1..k], k ∈ N0) refer to distinct attributes not occurring in sets X and Y .

(U)
XY → A1, · · · , XY → Ak, Y A1 · · ·Ak → B

XY → B

It can also be extended by other rule schemes to cope with negated de-
pendencies as well [19].

3.2. Graphical reasoning on sets of functional dependencies. The
rules presented above can directly be applied for deducing the consequences of a
set of constraints for small schemata given in terms of the graphical or spreadsheet
representation. We will focus on the ST and PQRST systems.

Graphical Rules for the Triangular Representation. The rules
of the PQRST implication system support graphical reasoning by their graph-
ical patterns shown in Figure 9 for the triangular representation (Y = {C}).
The small black arrows indicate support (necessary context) while the large grey
arrows show the implication effects. Rule (S) is a simple extension rule (exten-
sion of the left-hand side) and rule (T) can be called “rotation rule” (rotating
a dependency, i. e., changing its right-hand side by the support of a dependency
one dimension higher) or “reduction rule” (alternative interpretation: reducing
the determinant of a dependency by a lower-dimension support). We prefer the
rotation interpretation.

Fig. 9. Graphical versions of rules (S), (T) and (P), (Q), (R)



Reasoning Methods for Sets of Functional Constraints 197

For excluded functional constraints, rule (Q) acts as the extension rule
(needs support of a positive constraint, i. e., functional dependency) and (R) as
the rotation rule (needs a positive support too). These two rules can also be
viewed as negations of rule (T). Rule (P) is the reduction rule for excluded func-
tional constraints, with the opposite effect in contrast to rule (Q) (but without
the need of support). Rule (P) is also viewed as the negation of rule (S).

These graphical rules can be generalized to cases of higher dimensions,
where the number of attributes is greater than 3. In such a case, a single rule
may have different patterns (e. g., depending on the size of the attribute set Y or
the layout of the graph, see [19]).

Recall Figure 5 for three examples of the ternary case. The triangle on
the left-hand side shows an example of the application of graphical (triangular)
rule (S). On the right-hand side, rule (P) is used twice while in the middle rule
(S) is used twice followed by (T). The middle also demonstrates that no explicit
rule for transitivity is needed. For an example of the quaternary case, Figure 10
shows how transitivity can be simulated with these rules for the non-singleton case
{C → BD, BD → A} ⊢ C → A in both quaternary representations. C → BD
is first decomposed into singleton constraints {C → B, C → D}. The numbers

Fig. 10. An example of tetrahedral or quadratic representation and reasoning:
Simulating transitivity (numbers show a possible order of deduction)



198 János Demetrovics, András Molnár, Bernhard Thalheim

in the figure show a possible order of deduction: 1. BD → A ⊢(S) BCD → A;
2. C → B ⊢(S) CD → B; 3. CD → B (supported by) BCD → A ⊢(T ) CD → A;
4. C → D (supported by) CD → A ⊢(T ) C → A. Note that the set is not closed.

When attributes are allowed to be declared as constants, graphical rules
for zero-dimensional constraints must be introduced. The implication systems ST
and PQRST are capable of handling this type of constraints and the graphical
representations can easily be extended (one extra vertex for each attribute) as
well as the graphical patterns of derivation rules.

Elicitation of the full knowledge by the ST and STRPQ algo-
rithms. The implication systems introduced above have the advantage of the
existence of a specific order of rules which provides a complete algorithmic method
for getting all the implied functional dependencies and excluded functional con-
straints starting with an initial set, allowing one to determine the possible types
of relationships the initial set of dependencies defines:

1. Starting with the given initial set of non-trivial, singleton functional depen-
dencies and excluded functional constraints as input,

2. extend the determinants of each dependency using rule (S) as many times
as possible, then

3. apply rule (T) until no changes occur,

4. apply rule (R) until no changes occur,

5. reduce and extend the determinants of excluded constraints using rules (P)
and (Q) as many times as possible.

6. Output the generated set.

The above method is called STRPQ algorithm and can be used for rea-
soning on sets of functional constraints, especially in terms of the graphical and
spreadsheet representations. For positive dependencies only, steps 4 and 5 can be
skipped, resulting in the ST algorithm. It is proven that this yields a complete
method [19].

It can be fine-tuned by taking dimensions into account: start with lower-
dimensional instantiations of rule (S) and move towards higher dimensions. When
applying rule (T) the opposite should be done: start with the highest-dimensional
rotations possible and end with the lowest-dimensional.



Reasoning Methods for Sets of Functional Constraints 199

BC AC AB B A C A C B Implication impact
→ → → → → → → → → of detected
A B C A B A C B C functional constraints

. ⊢ 1 . . 1 . . . . (S) A → B ⊢ AC → B

. . 1 . 1 . ⊢ 1 . . (T) AB → C, A → B ⊢ A → C

. 0 . . ⊢ 0 . . ⊢ 0 . (P) AC Y→ B ⊢ A Y→ B, C Y→ B

. . ⊢ 0 . 1 . 0 . . (Q) A → B, A Y→ C ⊢ AB Y→ C

. . 1 . ⊢ 0 . 0 . . (R) AB → C, A Y→ C ⊢ A Y→ B

Table 4. Example of the spreadsheet derivation of functional constraints: Rules of the
PQRST implication system in the spreadsheet form

3.3. Extension to spreadsheet reasoning. Let us consider the spread-
sheet representation for three attributes. Generalization of the following issues
for higher number of attributes is straightforward.

To use the spreadsheet for reasoning, we extend the notation to allow the
same distinction for the state of constraints as the small circles and empty/filled
circles in the graphical representation. Let 1 and 0 indicate the functional depen-
dencies and excluded functional constraints of the initial set, respectively. We
put a ‘.’ in each of the columns corresponding the constraints whose state is not
known.

As we get an implied positive constraint (functional dependency) during
the deduction process, we replace the corresponding ‘.’ with ⊢1 if the state of
the implied constraint was previously unknown. Similarly, an implied negated
constraint is indicated by ⊢0.

Table 4 shows how rules of the PQRST implication system can be repre-
sented in the spreadsheet form.

The STRPQ algorithm just presented for the graphical representation
provides a possible way for derivation of the full knowledge a partial set holds
in terms of the spreadsheet representation as well. The spreadsheet can also be
used for deriving contradictions. Contradictions occur whenever new constraints
are introduced and the implication system allows to derive the opposite. Other
implication systems can also be used.

We indicate a contradiction by the symbol �. The first case in Table
5 is an obvious one due to the rule system in the extended Armstrong system
(reversed transitivity). The second one is due to rule (Q) of the PQRST system.

The elicitation algorithm presented in the introduction of this paper now
has a formal basis. We can now derive from a set of given constraints all con-
straints that are implied and that are contradicted. We thus obtain a number of



200 János Demetrovics, András Molnár, Bernhard Thalheim

BC AC AB B A C A C B Implication impact
→ → → → → → → → → of detected
5 A B C A B A C B C functional constraints

. . . . 1 . 0 . ⊢ 0 �1 {A → B, A Y→ C} � {B → C}

. ⊢ 0 �1 . 1 . 0 . . {A → B, A Y→ C} � {AB → C}

Table 5. Deriving contradiction by spreadsheet reasoning

constraints whose validity is still open. Using the approach of [1] we can generate
sample data and provide them to the designer with the question whether these
data support a certain functional dependency or not. Therefore, sets of functional
dependencies can be definitively developed and the open problem stated at the
beginning is solved based on graphical and elicitation algorithms.

3.4. Other methods for sets of functional constraints.

Closing an attribute set. If the set is not closed and one wants to
know the closure of an attribute set X, three methods arise using the graphical
(or spreadsheet) representation, each having a strong connection with the well-
known closure algorithm. The first step is always dropping dependencies whose
right-hand side is in X. Afterwards, attributes are added to X one-by-one. The
methods may be combined.

Closing by paths needs the graph to be treated as a hypergraph with
dependencies as hyper-edges6. To get the closure of an attribute set, one seeks
for all attributes that can be reached by a hyper-path starting from X.

Closing by extension means we initially generate dependencies in the form
X → A from each Y → A,Y ⊂ X by rule (S) and collect them into a set FX .
Then X is extended by A and X → A is dropped. In the next step, dependencies
of FX are extended with A by (S) to match the new X and other dependencies
are added from the initial set whose left sides are equal to the new X. This is
repeated until FX is empty.

Closing by translation is based on the method discussed in [15] adapted
to the graphical representation. As an initial step, all basic dependencies are
translated by formally removing each attribute of X from the left-hand sides.
Some dependencies become zero-dimensional; they can be represented on the
graph as extra nodes at the attributes. In this way we get a reduced schema
and construct the graphical (or spreadsheet) representation of it. It is especially
useful if the schema has many attributes but the initial set X is relatively large

6A hyper-edge can have more startpoints (corresponding to the left side of a dependency)
but only one endpoint (the right side).



Reasoning Methods for Sets of Functional Constraints 201

too. We represent only their difference. The constant attributes of the reduced
schema – denoted by Y – are in the closure. The next step is a further reduction
of the schema by removing attributes of Y and drawing a new graph. The new
dependencies are obtained in the same way as before, formally removing elements
of Y from the dependencies (this means we simply generate the reductions of
them). This process is repeated until no further attributes exist (X is a key) or
we get an empty Y (X is not a key).

Determining the validity of a functional dependency and abduc-
tive reasoning. For a non-closed set of dependencies, there are basically two
options for looking for the validity of a specific dependency by our reasoning
framework – just as in any reasoning system.

A straightforward way is to close the attribute set on the left-hand side of
the desired dependency using one of the methods just discussed and see whether
the attribute on the right-hand side is in the closure.

As an alternative, a target-oriented method can be achieved by declaring
the desired constraint as the goal and generating an and/or structure of sub-goals
the goal can be derived from – e. g., reductions of the functional dependency
are alternative sub-goals since if one of them holds, the goal is achieved by the
extension rule (S). This method is less efficient, especially if the desired constraint
turns out not to be true. However, reversing this gives a possibility of abductive
reasoning : knowing the goal is true as a basic dependency, the designer can seek
for possible causes and decide whether or not to reconsider this basic constraint as
implied from some newly found and declared basic dependencies (‘explanations’)
and fine-tune the set of constraints by them.

4. Conclusion and open problems. We have proposed methods for
reasoning on sets of functional constraints using a graphical or spreadsheet repre-
sentation that can help a database designer to achieve complete and unambiguous
specification of schemata, especially relationships of higher arity. The main focus
is on considering sets of constraints as a whole instead of constraints one-by-one
as in the traditional functional dependency notation. We also consider negated
(excluded) dependencies to explicitly allow specification of invalidity of func-
tional dependencies. Inherent redundancy of the traditional syntax is eliminated
by not considering trivial and non-singleton constraints. A simple and powerful
implication system PQRST, convenient for the graphical and spreadsheet repre-
sentations, is taken as a basis for reasoning. There exists a specific order of rule
application for deriving all implied dependencies that can be fine-tuned by the
dimension of constraints (the size of their left-hand sides). Other tasks have also



202 János Demetrovics, András Molnár, Bernhard Thalheim

been considered and adaptations of some known algorithms sketched in terms
of the graphical representation and this reasoning framework. All this points
towards the future implementation of these methods in a software tool.

One open problem is developing convenient graphical representations of
attribute separation, grouping methods for cases with more attributes or other
types of database constraints. Another, still only partially solved problem is
determining the number of different closed sets of functional dependencies for
n ≥ 6 attributes7.

REFERE NC ES

[1] Albrecht M., E. Buchholz, A. Düsterhöft, B. Thalheim. An In-
formal and Efficient Approach for Obtaining Semantic Constraints Using
Sample Data and Natural Language Processing. In: Proc. Semantics in Data-
bases, LNCS 1358, Springer, Berlin, 1998, 1–28.

[2] Armstrong W. W. Dependency Structures of Data Base Relationships.
In: Information Processing 74, Proceedings of IFIP Congress 74 (Ed. J. L.
Rosenfeld), Stockholm, Aug. 5–10, 1974, North-Holland, Amsterdam, 1974,
580–583.

[3] Atzeni P., V. De Antonellis. Relational Database Theory. Addison-
Wesley, Redwood City, 1993.

[4] Biskup J. Boyce-Codd Normal Forma and Object Normal Forms. Informa-
tion Processing Letters, 32, No 1 (1989), 29–33.

[5] Biskup J. Foundations of Information Systems. Vieweg, Wiesbaden, 1995
(in German).

[6] Biskup J., J. Demetrovics, L. O. Libkin, M. Muchnik. On Relational
Database Schemes Having a Unique Minimal Key. J. of Information Process-
ing, 27 (1991), 217–225.

[7] Biskup J., T. Polle. Decomposition of Database Classes Under Path
Functional Dependencies and Onto Contraints. In: Proc. FoIKS’2000, LNCS
1762, Springer, 2000, 31–49.

[8] Burosch G., J. Demetrovics, G. O. H. Katona, D. J. Kleitman,

A. A. Sapozhenko. On the Number of Databases and Closure Operations.
TCS, 78, No 2 (1991), 377–381.

7Estimations exist, see [8, 18]



Reasoning Methods for Sets of Functional Constraints 203

[9] Camps R. From Ternary Relationship to Relational Tables: A Case Against
Common Beliefs. ACM SIGMOD Record, 31, No 2 (2002), 46–49.

[10] Chen & Associates. ER-Designer Reference Manual. Baton Rouge, LA,
1986–1989.

[11] Chen P. P. The Entity-Relationship Model: Toward a Unified View of
Data. ACM TODS, 1, No 1 (1976), 9–36.

[12] Chen P. P. (ed.) Proc. 1st Int. ER Conf., ER’79: Entity-Relationship Ap-
proach to Systems Analysis and Design, Los Angeles, USA, 1979, North-
Holland, Amsterdam, 1980.

[13] Codd. E. F. A Relational Model for Large Shared Data Banks. CACM, 13,
No 6 (1970), 197–204.

[14] Demetrovics J., N. X. Huy. Structure of Closure in Relational Databases.
In: Proceedings of Conference on intelligent management systems, Bulgarian
Academy of Sciences, Varna, 1989, 148–154.

[15] Demetrovics J., N. X. Huy. Translations of Relation Schemes and Rep-
resentations of Closed Sets. PU. M. A. Ser. A, 1, No 3–4 (1990), 299–315.

[16] Demetrovics J., N. X. Huy. Closed Sets and Translations of Relation
Schemes. Computers Math. Applic, 21, No 1 (1991), 13–23.

[17] Demetrovics J., G. Katona. Combinatorial Problems of Database Mod-
els. In: Colloquia Mathematica Societatis Janos Bolyai 42, Algebra, Combi-
natorics and Logic in Computer Science, Győr, Hungary, 1983, 331–352.

[18] Demetrovics J., L. O. Libkin, I. B. Muchnik. Functional Dependencies
and the Semilattice of Closed Classes. In: Proc. MFDBS’89, LNCS 364, 1989,
136–147.

[19] Demetrovics J., A. Molnar, B. Thalheim. Graphical and Spreadsheet
Reasoning for Sets of Functional Dependencies. Technical Report 0404, Kiel
University, Computer Science Institute,
http://www.informatik.uni-kiel.de/reports/2004/0404.html, 2004.

[20] Demetrovics J., A. Molnar, B. Thalheim. Graphical Reasoning for
Sets of Functional Dependencies. In: Proceedings of ER 2004, Lecture Notes
in Computer Science 3288, Springer Verlag, 2004, 166–179.

[21] Habib N., L. Nourine. The Number of Moore Families on n=6. Discrete
Mathematics, 294, No 3 (2005), 291–296.

[22] Higuchi A. Note: Lattices of Closure Operators. Discrete Mathematics,
179 (1998), 267–272.



204 János Demetrovics, András Molnár, Bernhard Thalheim

[23] Thalheim B. Open Problems in Relational Database Theory. Bull. EATCS,
32 (1987), 336–337.

[24] Thalheim B. Entity-Relationship Modeling – Foundations of Database
Technology. Springer, Berlin, 2000. See also
http://www.informatik.tu-cottbus.de/∼thalheim/HERM.htm.

[25] Yang C.-C. Relational Databases. Prentice-Hall, Englewood Cliffs, 1986.

János Demetrovics
MTA SZTAKI
Computer and Automation Institute of the Hungarian Academy of Sciences
Kende u. 13-17
H-1111 Budapest, Hungary
e-mail: demetrovics@sztaki.hu

András Molnár
Department of Information Systems
Faculty of Informatics
Eötvös Loránd University Budapest
Pázmány Péter stny. 1/C
H-1117 Budapest, Hungary
e-mail: modras@elte.hu

Bernhard Thalheim
Computer Science and Applied Mathematics Institute
University Kiel
Olshausenstrasse 40
24098 Kiel, Germany
e-mail: thalheim@is.informatik.uni-kiel.de

Received March 9, 2009
Final Accepted April 15, 2009


