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LOCAL BIFURCATIONS IN A NONLINEAR MODEL

OF A BIOREACTOR∗

Neli Dimitrova

Abstract. We consider a nonlinear model of a continuously stirred biore-
actor and study the stability of the equilibrium points with respect to prac-
tically important model parameters. We determine regions in the parameter
space where the steady states undergo transcritical and Hopf bifurcations.
In the latter case, the stability of the emerged limit cycles is also studied.
Numerical simulations in the computer algebra system Maple are presented
to illustrate the theoretical results.

1. Introduction. The nonlinear model of a continuously stirred biore-

actor based on one substrate and one biomass reaction is usually described by

the system of ODEs [3]

dS

dt
= D(Sin − S) − 1

k
· µ(S)X

dX

dt
= (µ(S) − D)X,
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where the phase variables S and X are the substrate and biomass concentrations,

Sin is the input substrate concentration, D is the dilution rate, µ(S) is a model

function of the specific growth rate of the biomass and k > 0 is a yield coefficient.

Continuous cultures of some microorganisms like Saccharomyces cere-

visiae and Zymomonas mobilis have long been known to exhibit oscillatory be-

haviour under suitable operating conditions (see [1] and the references there).

Unfortunately the above model is not able to predict this type of behaviour by

sudden changes in the model parameters. Instead, the following nonlinear model

of the continuous growth of the yeast strain Saccharomyces cerevisiae has been

proposed in [7], see also [1],

dS

dt
= D(Sin − S) − 1

k(S)
· µ(S) · X

dX

dt
= (µ(S) − D) · X,

(1)

where

k(S) = k0 + k1S

presents the yield as a function of the substrate concentration S; k0 and k1 are

real positive constants. For physical evidence the following constraints on the

phase variables and the model parameters are assumed [3]

D > 0, Sin > 0, 0 < S ≤ Sin, X ≥ 0.

This model is investigated in [1], assuming that µ(S) is modelled by the

Haldane law; it is shown there that under certain conditions the system undergoes

Hopf bifurcations of the steady states with respect to the parameter D. It is

known that Hopf bifurcations of the equilibrium points lead to the emergence

of limit cycles, which can be stable or unstable. For practical applications, the

knowledge of the stability/unstability of the limit cycle is very important, because

unstable oscillations can destroy the proper operation of the bioreactor process.

In [1] only the existence of limit cycles is demonstrated numerically, but their

stability type is not studied.

In this paper we study the same model, assuming that the function for

the specific growth rate of the microorganisms is described by the Monod law [3]

µ(S) =
µmaxS

kS + S
;
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µmax is a positive real constant called maximum specific growth rate of the bio-

mass, ks > 0 is a saturation constant. In Section 2 we transform the model into

a dimensionless form keeping some practically important coefficients. In Sections

3 and 4 we investigate the local one-parameter bifurcations of the steady states,

where D is considered as a bifurcation parameter. We show that under certain

conditions the system undergoes a transcritical and a Hopf bifurcation of the

equilibrium points. In the latter case we also investigate the stability type of the

limit cycle. The computer algebra system Maple is used to carry out symbolic

and numeric computations as well as the graphic visualization.

2. Analysis of steady states. In practical applications, the input

concentration Sin and the dilution rate D are under the control of the exper-

imenter. They can be changed to tune the bioreactor to work under desired

conditions. In what follows we shall assume that Sin is constant, and the dilution

rate D is the control (manipulated) variable.

The change of coordinates

s =
S

Sin
, x =

X

k0Sin
, u =

D

µmax
,

a =
k1Sin

k0
, b =

ks

Sin
, τ = µmaxt

transforms the model (1) into the following dimensionless form

ṡ = u(1 − s) − 1

k(s)
· µ(s) · x(2)

ẋ = (µ(s) − u) · x,(3)

where ṡ and ẋ mean
ds

dτ
and

dx

dτ
respectively,

k(s) = 1 + as, µ(s) =
s

b + s

with real positive constants a, b. Moreover,

0 < s ≤ 1, x ≥ 0, u > 0

are also assumed for biological reasons.
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In what follows we shall study the open-loop system (2)–(3) considering

u as a bifurcation parameter.

The equilibrium points (steady states) are solutions of the nonlinear al-

gebraic system, obtained from (2)–(3) by setting the right-hand side functions

equal to zero, that is

u(1 − s) − 1

k(s)
· µ(s) · x = 0(4)

(µ(s) − u) · x = 0.(5)

We are looking for nonnegative solutions of (4)–(5) as functions of u. Equations

(4)–(5) possess a nontrivial solution

s(u) =
bu

1 − u
,

x(u) = k(s(u))(1 − s(u)) =

(

1 +
abu

1 − u

)(

1 − bu

1 − u

)

,

u ∈
(

0,
1

1 + b

]

(6)

and a trivial solution (called a wash-out state)

(7) s(u) = 1, x(u) = 0 for all u > 0.

Denote

u∗ =
1

1 + b
= µ(1) < 1.

Obviously, u < u∗ implies x(u) > 0 and s(u) > 0. Moreover, at u = u∗,

s(u∗) = 1, x(u∗) = 0.

The steady states obviously satisfy the equality

s(u) +
1

k(s(u))
x(u) = 1, u ∈ (0, 1).

Denote

L = {(s, x) ∈ R2 : s > 0, x ≥ 0, s +
1

k(s)
x = 1}.

It is straightforward to see that the curve L is a weakly invariant set (manifold)

for the system (2)–(3), that is for any initial point (s(0), x(0)) ∈ L there exists a
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trajectory (s(t), x(t)) that remains in L for all t ∈ [0,+∞), see [5]. As we shall

see later, L is a stable manifold of the system.

Denote for simplicity y = (s, x) and by G(y;u) the right-hand side func-

tions of (2)–(3),

(8) G(y;u) =

(

u(1 − s) − 1

k(s)
· µ(s) · x, (µ(s) − u) · x

)T

.

The linearization (Jacobian matrix) DG(y;u) = DyG(y;u) evaluated at an equi-

librium point y(u) = (s(u), x(u)), u ∈ (0, u∗), is easily seen to be

DG(y(u);u) =











R(a, b;u)

b(1 − u(1 − ab))
− u(1 − u)

1 − u(1 − ab)

(1 − u(1 + b))(1 − u(1 − ab))

b
0











,

where

R(a, b;u) = (1 + b)(1 − ab)u3 + ((1 − b)(1 + ab) − 4)u2 + 3u − 1.

Note that u ∈ (0, u∗] implies u <
1

1 − ab
.

It is known that if an equilibrium point is hyperbolic, that is when the

linearization DG(y0;u0) = DyG(y0;u0) at some equilibrium point y0 for some

value of u = u0 does not possess eigenvalues on the imaginary axes, then (y0;u0)

is linearly stable or unstable. This means that varying u slightly in the neigh-

bourhood of u0 will not change the nature of stability of the steady state [4], [12].

When (y0;u0) is not hyperbolic, that is when DG(y0;u0) has eigenvalues on the

imaginary axes, then for u close to u0 new dynamical behavior can occur.

The characteristic equation of DG(y(u);u) is

(9) λ2 − L(a, b;u)λ + K(a, b;u) = 0

with L(a, b;u) and K(a, b;u) being the trace and the determinant of DG(y(u);u)

respectively,

L(a, b;u) = tr (DG(y(u);u)) =
R(a, b;u)

b(1 − u(1 − ab))
,

K(a, b;u) = det (DG(y(u);u)) =
1

b
u(1 − u)(1 − u(1 + b)).
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Denote by λ1,2(a, b;u) the roots of (9). The local stability of the equilibrium

points depends on the signs of the real parts of the eigenvalues λ1,2(a, b;u); the

signs can be easily determined using the well known relations

λ1(a, b;u) + λ2(a, b;u) = L(a, b;u), λ1(a, b;u) · λ2(a, b;u) = K(a, b;u).

If λ1,2(a, b;u) are real numbers, then their signs depend on both sign L(a, b;u)

and sign K(a, b;u). If λ1,2(a, b;u) are complex conjugate numbers (λ1(a, b;u) =

λ2(a, b;u)) then K(a, b;u) > 0 is satisfied for all a, b, u; in this case the sign of

the real part depends on sign L(a, b;u).

3. Local bifurcations of the equilibrium points with a single

zero eigenvalue. In this section we shall consider the simplest way in which an

equilibrium point can be nonhyperbolic, namely when the Jacobian matrix pos-

sesses a single zero eigenvalue. This means that the two eigenvalues λ1,2(a, b;u)

should be real numbers.

The Jacobian matrix DG(y(u);u) possesses a single zero eigenvalue if and

only if

L(a, b;u) 6= 0, K(a, b;u) = 0.

Obviously,

K(a, b;u) = 0 ⇐⇒ u = u∗ =
1

1 + b
.

It is straightforward to see that

L(a, b;u∗) =
b2(a + 1)

(1 + b)2
> 0.

Thus the steady state (s(u∗), x(u∗)) = (s∗, x∗) = (1, 0) is a nonhyperbolic equi-

librium of the dynamic system (2)–(3). Our goal is to determine the nature of

stability of (s(u), x(u)) for u near to the bifurcation value u∗. To do this we shall

find the reduction of the system (2)–(3) at the nonhyperbolic point (s∗, x∗) to

the corresponding center manifold [4], [12].

Proposition 1. The system of ODEs (2)–(3) undergoes a transcritical

bifurcation at the nonhyperbolic point (s∗, x∗) = (1, 0).

P r o o f. The following coordinate change

ξ = 1 − s, η = x, v = u∗ − u
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transforms (s∗, x∗;u∗) into zero (0, 0; 0) = (0; 0). Using Taylor approximations of

µ(1 − ξ) and ϕ(ξ) =
µ(1 − ξ)

k(1 − ξ)
at ξ = 0,

µ(1 − ξ) = µ(1) − dµ

ds
(1)ξ = u∗ − mξ,

ϕ(ξ) = ϕ(1) +
dϕ

ds
(1) ξ =

u∗

1 + a
+

m

1 + a
ξ − au∗

(1 + a)2
ξ

within

m =
dµ

ds
(1) =

b

(1 + b)2
> 0,

system (2)–(3) is presented in the following form, where the parameter v has been

included as a third dependent variable:
(

ξ̇

η̇

)

= J∗ ·
(

ξ

η

)

+

(

g1(ξ, η; v)
g2(ξ, η; v)

)

,(10)

v̇ = 0;

in (10), J∗ denotes the Jacobian matrix evaluated at (s∗, x∗;u∗) =

(

1, 0;
1

1 + b

)

,

J∗ =





−u∗
u∗

1 + a
0 0





and

g1(ξ, η; v) = vξ +
1

1 + a

(

m − au∗

1 + a

)

ξη

g2(ξ, η; v) = vη − mξη.

The eigenvalues λj and the corresponding eigenvectors pj, j = 1, 2, of J∗ are

given by

λ1 = 0, p1 = (1, 1 + a)T ;

λ2 = −u∗, p2 = (1, 0)T .

Obviously, λ2 < 0 holds true. Forming a matrix P by taking as columns the

eigenvectors pj , j = 1, 2, and finding its inverse P−1,

P =

(

1 1
1 + a 0

)

, P−1 =
1

1 + a

(

0 1
1 + a −1

)

,
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we make the coordinate change

(

ξ

η

)

= P

(

ζ

κ

)

,

(

ζ

κ

)

= P−1

(

ξ

η

)

.

System (10) is transformed into

(

ζ̇

κ̇

)

=

(

0 0
0 −u∗

)

·
(

ζ

κ

)

+

(

f1(ζ, κ; v)
f2(ζ, κ; v)

)

(11)

v̇ = 0,

where

f1(ζ, κ; v) = vζ − mζ2 − mζκ,

f2(ζ, κ; v) = vκ +

(

2m − au∗

1 + a

)

(ζ2 + ζκ).

From the existence theorem for center manifolds [4], the stability of (ξ, η) = (0, 0)

near v = 0 is determined by studying a one-parameter family of first-order ODEs

on the center manifold; the latter can be locally represented as a graph over ζ

and v by

W c(0) =
{

(ζ, κ; v) ∈ R3| κ = h(ζ; v)
}

,

where h(0; 0) = 0 and Dζh(0; 0) = 0 for ζ and v sufficiently small. Using the

invariance of the graph of h(ζ; v) under the dynamics generated by (11), we have

κ̇ =
∂

∂ζ
h(ζ; v)ζ̇ +

∂

∂v
h(ζ; v)v̇ = −u∗ · h(ζ; v) + f2(ζ, h(ζ; v); v).

Substituting ζ̇ = f1(ζ, h(ζ; v); v) and v̇ = 0 we obtain

(12)
∂

∂ζ
h(ζ; v) · f1(ζ, h(ζ; v); v) + u∗ · h(ζ; v) − f2(ζ, h(ζ; v); v) = 0.

In the next step we shall compute the center manifold W c(0) approximately and

derive the dynamics on W c(0). Using Theorem 2.1.3 from [12], we assume that

h(ζ; v) is of the form

h(ζ; v) = a1ζ
2 + a2ζv + a3v

2 + O(ζ3, ζ2v, ζv2, v3)
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with unknown coefficients a1, a2, a3. Substituting in (12) and equating terms

with equal powers to zero we find

a1 =
2m

u∗
− a

1 + a
, a2 = a3 = 0,

thus

h(ζ; v) =

(

2m

u∗
− a

1 + a

)

ζ2.

Hence the system of ODEs reduced on the center manifold is given by

ζ̇ = vζ − mζ2

v̇ = 0.
(13)

Since m > 0, we can set m = 1 in the first equation of (13) to obtain the normal

form

ζ̇ = ζ(v − ζ).

According to Theorem 5.4 in [8], the system (2)–(3) is locally topologically equi-

valent to the system

ζ̇ = ζ(v − ζ)(14)

κ̇ = −κ.(15)

The two equations in (14)–(15) are decoupled. Obviously, ζ = 0 and ζ = v are

equilibrium points of (14), see Figure 1. It is straightforward to see, that for

0

ze
ta

v

Fig. 1. Bifurcation diagram of (14)
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(a)

u*
0

1

s

u

(b)

u*
0

x

u

Fig. 2. Bifurcation diagrams of the steady states components: (a) s(u) and (b) x(u);
stable branches are denoted by thick lines, unstable branches – by thin lines

v < 0 the point ζ = 0 is linearly stable and ζ = v is unstable; these two points

coalesce at v = 0 and, for v > 0, ζ = 0 is unstable and ζ = v is stable. Thus,

an exchange of stability between the two steady states occurs at the bifurcation

value v = 0; the type of bifurcation is transcritical [12]. �

In the (s, x)-plane, it is easy to see that for u < u∗, the nontrivial steady

state (s(u), x(u)) is a stable equilibrium whereas (s∗, x∗) = (1, 0) is unstable. At

u = u∗, the steady states (s(u), x(u)) and (s∗, x∗) = (1, 0) coalesces and exchange

stability, thus for u > u∗, the unique equilibrium (1, 0) is stable, see Figure 2.

Figure 3 presents phase portraits of (2)–(3) for fixed values of a, b and

for different values of u near to u∗. The symbol circle denotes the corresponding

steady state (s(u), x(u)), the boxes denote the initial points (s(0), x(0)) used to

compute the system trajectories. The grey coloured curve presents the invariant

set L.

Figure 4 shows the plane u =
1

1 + b
in the parameter space (a, b, u).

For any fixed pair of values of (a, b), changing u form 0 to 1, a transcritical

bifurcation of the steady states occurs by crossing the plane, leading thus to a

wash-out (x = 0) of the biomass in the bioreactor.

4. Hopf bifurcations of the equilibrium points. This type of

bifurcation of an equilibrium point is named after E. Hopf, who was the first

to prove (in 1942) an existence theorem for n-dimensional systems of ODEs [6],

[9]. Historically, examples of such kind of bifurcations can be found in the work
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Fig. 3. Phase portraits in a neighborhood of the transcritical bifurcation value
u∗: (a) u < u∗, (b) u = u∗, (c) u > u∗. The (grey) curve presents the invariant

line L.
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Fig. 4. The plane u =
1

1 + b
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of Poincaré [10]. The first specific study and formulation of a theorem is due

to Andronov [2]. The works of Poincaré and Andronov are concerned with two-

dimensional systems, but before the discovery of the center manifold theory [4].

For that reason some authors call this type of bifurcations Poincaré–Andronov–

Hopf [12] or Andronov–Hopf ones [8]. In the literature they are known only as

Hopf bifurcations.

4.1. Theoretical background. The presentation here follows [8]. Con-

sider a system

(16) ẋ = f(x, α), x = (x1, x2)
T ∈ R2, α ∈ R1,

with a smooth vector function f . Without loss of generality assume that x = 0

is an equilibrium point of the system, such that the Jacobian matrix Df(x;α) =

Dxf(x;α) evaluated at x = 0 has for sufficiently small |α| a pair of complex conju-

gate eigenvalues, which degrade at α = 0 in pure imaginary conjugate numbers.

Then the system can be written in the following form

(17) ẋ = Df(0;α)x + F (x;α),

where the function F is a smooth vector function whose components have Taylor

expansions in x starting with at least quadratic terms, F = O(‖x‖2). The com-

ponents of the Jacobian matrix Df(0;α) are smooth functions of α. Denote by

λ(α) and λ(α) the pair of complex conjugate eigenvalues,

λ(α) = λR(α) + iλI(α), λ(α) = λR(α) − iλI(α),

where

λR(α) =
1

2
(tr Df(0;α)) , λI(α) =

1

2

√

4 (det Df(0;α)) − (tr Df(0;α))2.

The necessary conditions for a Hopf bifurcation of the steady state x = 0

at α = 0 to occur is

λR(0) = 0, λI(0) > 0.

Proposition 2 [8]. By introducing a complex variable, system (17) can

be written for sufficiently small |α| in the form

(18) ż = λ(α)z + g(z, z̄, α),

where g = O(|z|2) is a smooth function of (z, z̄, α).
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S k e t c h o f t h e p r o o f. We give below the main steps of the proof,

because they propose a method for practical computation of the Hopf bifurcation.

Let q(α) be an eigenvector of Df(0;α) corresponding to the eigenvalue

λ(α),

Df(0;α) · q(α) = λ(α) · q(α),

and let p(α) be the eigenvector of the transposed Jacobian matrix Df(0;α)T

corresponding to the eigenvalue λ(α),

Df(0;α)T · p(α) = λ(α) · p(α).

Normalize p = p(α) = (p1, p2)
T with respect to q = q(α) = (q1, q2)

T , so that

〈p(α), q(α)〉 = 1,

where 〈p, q〉 = p̄1q1 + p̄2q2. Any vector x ∈ R2 can be uniquely presented as

x = zq(α) + z̄q̄(α)

for some complex z; actually, z is determined by z = 〈p(α), x〉. The complex

variable z obviously satisfies the equation

ż = λ(α)z + 〈p(α), F (zq(α) + z̄q̄(α), α)〉 ,

having the required form with g(z, z̄, α) = 〈p(α), F (zq(α) + z̄q̄(α), α)〉. �

We write a formal Taylor series of g in two complex variables z and z̄,

g(z, z̄, α) =
∑

j+k≥2

1

j! k!
gjk(α)zj z̄k,

where

gjk(α) =
∂j+k

∂zj∂z̄k
〈p(α), F (zq(α) + z̄q̄(α), α)〉

∣

∣

∣

∣

(z,z̄)=(0,0)

j + k ≥ 2, j, k = 0, 1, . . . .

The next step is to simplify the nonlinear part g(z, z̄, α).

Proposition 3 [8] (Poincaré normal form of the Hopf bifurcation). The

equation

ż = λ(α)z +
∑

2≤j+k≤3

1

j!k!
gjk(α) · zj z̄k + O(|z|4)
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with λ(α) = λR(α)+ iλI(α), λR(0) = 0, λI(0) = ω0 > 0 can be transformed by an

invertible parameter-dependent change of complex coordinate, smoothly depending

on the parameter α, for all sufficiently small |α|, into an equation with only the

resonant cubic term z2z̄:

ż = λ(α)z + c1(α) · z2z̄ + O(|z|4). �

It follows from the proof [8] that

(19) c1(0) =
i

2ω0

(

g20g11 − 2|g11|2 −
1

3
|g02|2

)

+
g21

2
,

gjk = gjk(0), j, k = 0, 1, 2.

Definition 1. The real constant

l1(0) =
Re c1(0)

ω0
=

1

2ω2
0

Re (ig20g11 + ω0g21) , ω0 = λI(0),

is called the first Lyapunov coefficient of the equilibrium point x = 0 at the bifur-

cation value α = 0.

Finally, the following Theorem holds true:

Theorem 1 [8] (Topological normal form of the Hopf bifurcation). Sup-

pose the two-dimensional system (16) with smooth f , has for sufficiently small

|α| the equilibrium x = 0 with eigenvalues λ1,2(α) = λR(α) ± iλI(α), where

λR(0) = 0, λI(0) = ω0 > 0. Let the following conditions be satisfied:

(H.1) l1(0) 6= 0, where l1 is the first Lyapunov coefficient;

(H.2)
dλR

dα
(0) 6= 0.

Then there are invertible coordinate and parameter changes and a time repara-

metrization transforming the system into the following normal form with respect

to a new complex variable z = z1 + iz2

ż = (β + i)z + σ · z|z|2,

or equivalently
(

ż1

ż2

)

=

(

β −1
1 β

)(

z1

z2

)

+ σ · (z2
1 + z2

2)

(

z1

z2

)

,(20)
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where β = β(α) =
λR(α)

λI(α)
is a new parameter, and σ = sign l1(0) = ±1. �

Using the representation z = ̺eiϕ, ̺ ≥ 0, we obtain the following polar

form of the latter system (20)

˙̺ = ̺(β + σ · ̺2)(21)

ϕ̇ = 1.(22)

The equations for ̺ and ϕ are uncoupled. The first equation has the equilibrium

point ̺ = 0 for all values of β. The equilibrium is linearly stable if β < 0; for

β > 0 the equilibrium becomes linearly unstable.

Assume first that σ = −1, that is l1(0) < 0. In this case the equilibrium

point ̺ = 0 is nonlinearly stable at β = 0 (i. e, the rate of solution convergence

to ̺ = 0 is no longer exponential). For β > 0 there is a second equilibrium of

(21), ̺0(β) =
√

β, which is no more a point (due to the superposition of the

motions defined by the two equations), but an isolated closed orbit, called a limit

cycle, which is unique and stable; the cycle is a circle of radius ̺0(β) =
√

β. All

orbits, starting outside or inside the cycle except at the origin tend to the cycle

as t → ∞. In this case the bifurcation is called supercritical (see Figure 5(a)).

In the opposite case σ = +1, that is l1(0) > 0, the system undergoes the

Hopf bifurcation at β = 0, but the limit cycle is unstable. The limit cycle exists

for β < 0 and disappears when β crosses zero from negative to positive values.

(a)

0

y

x

(b)

0

y

x

Fig. 5. Phase portrait of (21)–(22); (a) supercritical Hopf bifurcation (l1(0) < 0);
(b) subcritical Hopf bifurcation (l1(0) > 0)z
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The Hopf bifurcation is called subcritical (Figure 5(b)). The equilibrium ̺ = 0

is stable for β < 0, unstable for β > 0 and nonlinearly unstable at β = 0.

4.2. Hopf bifurcations in the bioreactor model. In practical appli-

cations we need to compute the first Lyapunov coefficient l1 at the bifurcation

parameter value. The value of l1 depends on the normalization of the eigenvec-

tors p and q, but we need only the sign of l1 at the bifurcation parameter value

and not the exact value of l1 to detect stability of the limit cycle.

As we have seen in Section 2, the nontrivial steady states of (2)–(3) are

(s(u), x(u)) and they exist for any u ∈
(

0,
1

1 + b

]

, see (6). Let us recall that

we shall study the Hopf bifurcations of the equilibrium points with respect to

the bifurcation parameter u. Denote as before (see (8)) by G the right-hand

side functions of (2)–(3). The necessary conditions for the existence of a Hopf

bifurcation at (s(u), x(u)) are

L(a, b;u) = tr DG(s(u), x(u);u) =
R(a, b;u)

b(1 − u(1 − ab))
= 0,(23)

K(a, b;u) = det DG(s(u), x(u);u) > 0.(24)

Obviously, (23) and (24) are equivalent respectively to

R(a, b;u) ≡ (1 + b)(1 − ab)u3 + ((1 − b)(1 + ab) − 4)u2 + 3u − 1 = 0,(25)

K(a, b;u) ≡ 1

b
u(1 − u)(1 − u(1 + b)) > 0 ⇐⇒ 0 < u <

1

1 + b
< 1.(26)

Condition (25), R(a, b;u) = 0, leads in general to solving a cubic equation with

respect to the bifurcation parameter u; if ab = 1, then R(a, b;u) = 0 reduces to a

quadratic equation. We are looking for a solution u0 of R(a, b;u) = 0 such that

0 < u0 <
1

1 + b
is satisfied. The discriminant ∆(a, b) of R(a, b;u) = 0 is given by

(27) ∆(a, b) = −4b3
(

a3b3 + 3a2(a − 1)b2 + 3a(a2 + 7a + 1)b − (a − 1)3
)

.

The cubic equation R(a, b;u) = 0 possesses three distinct real roots if ∆(a, b) > 0

and a unique real root if ∆(a, b) < 0. Denote

Σ =
{

(a, b) ∈ R2 : a > 1, b > 0,∆(a, b) > 0
}

.

Figure 6 presents the set Σ (grey coloured), bounded by the curve ∆(a, b) = 0.
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0

0.2

b

1 10a

Fig. 6. The set Σ (grey coloured), bounded by ∆(a, b) = 0

Proposition 4. For any point (a, b) ∈ Σ there exist exactly two real roots

u1, u2 of R(a, b;u) = 0 satisfying ui ∈
(

0,
1

1 + b

)

, i = 1, 2. The third real root

u3 for (a, b) ∈ Σ as well as the unique real root u3 in the case ∆(a, b) < 0 satisfies

|u3| > 1.

P r o o f. It follows directly from the Theorem of Budan–Fourier for the

number of roots of a polynomial with real coefficients in a given interval, see

e. g. [11]. �

Let us fix (a, b) ∈ Σ and let u1, u2 ∈
(

0,
1

1 + b

)

be the two Hopf bi-

furcation values, such that u1 < u2. To apply the normal form theorem to the

analysis of the Hopf bifurcation at (s(uj), x(uj)), j = 1, 2, we have to check

whether conditions (H.1) and (H.2) of Theorem 1 are fulfilled.

Denote by λR(a, b;u) ± iλI(a, b;u) the eigenvalues of the linearization

DG(s, x;u) for u close to u1 or u2. Since λR(a, b;u) =
1

2
L(a, b;u) holds true, we

have for j = 1, 2,

d

du
λR(a, b;uj) =

1

2

d

du
L(a, b;uj) =

1

2

d

du
R(a, b;uj) · b(1 − uj(1 − ab)) 6= 0

⇐⇒ d

du
R(a, b;uj) 6= 0 ⇐⇒ ∆(a, b) 6= 0.

Therefore, condition (H.2) is satisfied.

Denote for convenience by u0 any one of the bifurcation values u1, u2,

u0 ∈ {u1, u2},
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and let be (s0, x0) = (s(u0), x(u0)). To compute the first Lyapunov coefficient at

u = u0 we write system (2)–(3) in the form

(

ṡ

ẋ

)

= J0 ·
(

s − s0

x − x0

)

+

(

g1(s, x)
g2(s, x)

)

,

where

J0 =











0 − u0(1 − u0)

1 − u0(1 − ab)

1

b
(1 − u0(1 + b))(1 − u0(1 − ab)) 0











,

g1(s, x) = −a2s3
0 − 3abs0 − b(1 + ab)

(b + s0)3(1 + as0)3
x0 · (s − s0)

2

− b − as2
0

(b + s0)2(1 + as0)2
(s − s0)(x − x0)

− a3s4
0 − 2a3s3

0 + 6a2bs2
0 + 4ab(1 + ab)s0 + b(a2b2 + ab + 1)

(b + s0)4(1 + as0)4
x0 · (s − s0)

3

− a2s3
0 − 3abs0 − b(1 + ab)

(b + s0)3(1 + as0)3
·(s − s0)

2(x − x0),

g2(s, x) = − b

(b + s0)3
x0(s − s0)

2 +
b

(b + s0)2
(s − s0)(x − x0)

+
b

(b + s0)4
x0(s − s0)

3 − b

(b + s0)3
(s − s0)

2(x − x0).

Denote for simplicity ω2
0 = det J0 = λI(a, b;u0)

2 =
1

b
u0(1−u0)(1−u0(1+b)) > 0;

the eigenvalues of J0 are then ±iω0. Compute consecutively the eigenvectors

q = (q1, q2)
T and p = (p1, p2)

T ,

J0 · q = iω0 · q, JT
0 · p = −iω0 · p

and normalize them so that 〈p, q〉 = 1 (we use the same notations p, q for sim-
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plicity):

p =







iω0

2u0(1 − u0)
1

2(1 − u0(1 − ab))






, q =





i

ω0
u0(1 − u0)

1 − u0(1 − ab)



 .

Then s − s0 and x − x0 can be uniquely represented as

s − s0 = zq1 + z̄q̄1, x − x0 = zq2 + z̄q̄2

for some complex variable z. Further construct the function

g(z, z̄) = p̄1g1(s0 + zq1 + z̄q̄1, x0 + zq2 + z̄q̄2)+ p̄2g2(s0 + zq1 + z̄q̄1, x0 + zq2 + z̄q̄2)

and find its Taylor expansion at (z, z̄) = (0, 0):

g(z, z̄) =
∑

2≤j+k≤3

1

j!k!
gjk · zj z̄k + O(|z|4), gjk = gjk(u0).

Using the coefficients g20, g11 and g21 we compute the first Lyapunov coefficient

l1(u0) =
1

2ω2
0

Re (ig20 · g11 + ω0g21).

If l1(u0) < 0 then there will be a stable limit cycle; if l1(u0) > 0 then the limit

cycle will be unstable.

To understand the stability of (s0, x0) we consider the Taylor expansion

of λR(a, b;u) about u0:

λR(a, b;u) = λR(a, b;u0) +
d

du
λR(a, b;u0) · (u − u0) + O((u − u0)

2)

=
1

2

d

du
R(a, b;u0) · b(1 − u0(1 − ab)) · (u − u0) + O((u − u0)

2).

The topological normal form of the Hopf bifurcation in polar coordinates (see

(21)–(22)) is then given by

˙̺ = ̺(β − σ · ̺2)

ϕ̇ = 1
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within σ = sign l1(u0) = ±1 and

β = β(u) =
1
2

d
du

R(a, b;u0) · b(1 − u0(1 − ab)) · (u − u0)

λI(a, b;u)
.

Since λI(a, b;u) > 0 for sufficiently small |u−u0| and 1−u0(1−ab) > 0 hold true,

it follows that the sign of β(u) depends on the sign of
d

du
R(a, b;u0) · (u− u0). It

is straightforward to see that at the bifurcation values u1 and u2 the following

inequalities are valid:

d

du
R(a, b;u1) > 0,

d

du
R(a, b;u2) < 0.

Therefore, the equilibrium (s(u), x(u)) is a stable focus for u ≤ u1 and u ≥ u2.

Limit cycles emerge for u > u1 and u < u2, whose stability depends on sign l1(uj),

j = 1, 2. The latter will be evaluated below numerically.

A work session in the computer algebra system Maple is designed to carry

out all the symbolic and numeric computations as well as the graphic visualiza-

tions.

Figure 7 presents a set of Hopf bifurcation points in the 3-dimensional

parameter-phase space (u, s(u), x(u)). The paraboloid surface is constructed in

the following way: on a grid of points {(ai, bj)} ∈ Σ, i = 1, . . . , n, j = 1, . . . ,m,

the two bifurcation values u
(i,j)
1 , u

(i,j)
2 are computed and the steady states s(u

(i,j)
k ),

x(u
(i,j)
k ), k = 1, 2, are evaluated.

1

2

3

x
0.2

0.4

s

0.6
0.8

1
u

Fig. 7. Hopf bifurcation in the parameter-phase space (u, s, x)
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(a)
s(u)0.7

s

0.6 0.9u

(a)

x(u)

1

2.6

x

0.6 u

(b)
s(u)0.6

s

0.6 0.9u

(b)

x(u)

1

2.6

x

0.6 0.9u

(c)

s(u)
0.6

s

0.6 0.8u

(c)

x(u)

1

2.6

x

0.6 0.8u

Fig. 8. Hopf bifurcations of the steady state components s(u) and x(u), u ∈ (0, u∗) for
a = 8; the graphics of s(u) and x(u) are visualized for (a) b = 0.1, (b) b = 0.03,

(c) b = 0.125.
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Figure 8 visualizes a projection of the Hopf bifurcation surface from Figure

7 on the plane (u, s) (left column) and (u, x) (right column). This projection is

presented by the parabola on all plots, computed for fixed a = 8 and a mesh of

points b such that (a, b) ∈ Σ. For three different values of b, the graphics of the

steady states s(u) and x(u), u ∈ (0, u∗) are also presented. The crossing points

of the parabola and the graphics of s(u) and x(u) (denoted by a circle and a

box) on plots (a) and (b) correspond to the two different Hopf points (u1, s(u1))

and (u2, s(u2)), respectively (u1, x(u1)) and (u2, x(u2)); plot (c) shows the case

∆(a, b) = 0, i. e. when u1 = u2.

Figure 9 presents the first Lyapunov coefficient l1 as a function of the Hopf

bifurcation values uj . The visualization is based on the numerical computations

used in Figure 8 for fixed a = 8 and the same mesh of points b such that (a, b) ∈ Σ.

As one can see, l1 is negative on the set of the Hopf bifurcation values.

0

–10

–40

l1

0.65 0.9 1u

Fig. 9.The first Lyapunov coefficient l1

The next example visualizes the solution of (2)–(3) in neighbourhoods of

the two Hopf bifurcation points for concrete values of the model coefficients a = 8

and b = 0.03. The cubic equation R(a, b;u) = 0 possesses the following two roots

u1 and u2 in the interval (0, 0.9708),

u1 = 0.7095, u2 = 0.93204.

As mentioned before, the first Lyapunov coefficient computed at u1 and u2 is

negative,

l1(u1) < 0, l1(u2) < 0.
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0.2
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0
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0.6

0.8
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u>u1

0

0.1

0.2

0.3

s

30 70 100t
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0

0.2

0.6

0.8

s

50 100 150t

Fig. 10. The phase curve s(t) computed for different values of u near to u1 (left
column) and u near to u2 (right column)
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In both cases the periodic orbits are stable, that is, the Hopf bifurcations are

supercritical. Figure 10 presents the solution s(t) when u undergoes small changes

near u1 (left column) and near u2 (right column). One can see the damped

oscillations of s(t) when u ≤ u1 that correspond to the stable focus (s(u), x(u))

and the fixed oscillations in the case u > u1, when the limit cycle emerges. In the

right column the transition from fixed (u < u2) to damped (u ≥ u2) oscillations

is clearly observable.

5. Discussion and future work. Figure 11 presents the surface

R(a, b;u) = 0 and the plane u =
1

1 + b
. The surface and the plane, do not inter-

sect. For fixed coefficient values (a, b), when the bifurcation parameter u changes

from 0 to 1, the steady states (s(u), x(u)) might undergo two Hopf bifurcations

and one transcritical bifurcation.

The presence of a transcritical bifurcation leads to biomass wash-out (x =

0) and the bioprocess breaks down.

The numerical simulations show that the dynamic model undergoes super-

critical Hopf bifurcations of the steady states. The supercritical Hopf bifurcation

(with l1(u0) < 0) of the steady state (s0, x0) is also called soft or noncatastrophic

[8]; in this case the stable equilibrium at u = u0 goes into a stable limit cycle and

all system trajectories spiral towards it (see Figure 5(a)). The system “remains”

in a neighbourhood of the equilibrium (s0, x0) and is “controllable” in the sense

that small changes of the control input u will return it into the stable equilibrium.

0.6

0.8

1

u

0.1 0.2
b5

10 a

Fig. 11. The surface R(a, b; u) = 0 and the plane u =
1

1 + b
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The violation of condition (H.2) in Theorem 1 means that the two bifur-

cation values u1 and u2 coincide; in this case the eigenvalues do not cross the

imaginary axis as the parameter passes through the bifurcation value u1 = u2.

This results in the same local phase portrait for either sub- or supercritical pa-

rameter values depending on the sign of l1.

If condition (H.1) of Theorem 1 is not satisfied, that is if the first Lyapunov

coefficient vanishes at a bifurcation point, then at this point the Hopf bifurcation

turns into the Bautin bifurcation, also called a generalized (or degenerate) Hopf

bifurcation. To unfold this type of bifurcation, a second bifurcation parameter

should be involved; this leads to the so- called co-dimension two bifurcations.

Such bifurcations will be a subject of a further study.
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