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ABSTRACT. Due to wide range of interest in use of bio-economic models
to gain insight in to the scientific management of renewable resources like
fisheries and forestry, variational iteration method (VIM) is employed to
approximate the solution of the ratio-dependent predator-prey system with
constant effort prey harvesting. The results are compared with the results
obtained by Adomian decomposition method and reveal that VIM is very
effective and convenient for solving nonlinear differential equations.

1. Introduction. From the point of view of human needs, the exploita-
tion of biological resources and guaranteed continuous harvesting of populations
in fishery, forestry, and wildlife management are of great importance. There is a
wide range of interest in the use of bio-economic models to gain insight in to the
scientific management of renewable resources like fisheries and forestries.

ACM Computing Classification System (1998): G.1.7.
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This is related to the optimal management of renewable resources [1].
Generally speaking, it is necessary to investigate the sustainability of harvesting
of populations in some models. Taking in to consideration the above reasons, we
focus on the ratio-dependent predator-prey model with constant effort harvesting
[2, 3, 4]. The reason for the model is that numerous field and laboratory exper-
iments and observations showed that functional and numerical responses over
typical ecological timescales ought to depend on the densities of both prey and
predators, especially when predators must search for food and therefore share or
compete for food [5].

The suitable functional response is a ratio-dependent response function
in which the per capita predator growth rate should be a function of the ratio of
prey to predator abundance.

In this paper, we assume that the predator in the model is not of com-
mercial importance. The prey is subjected to constant effort harvesting with a
parameter measuring the effort being spent by a harvesting agency. The harvest-
ing activity does not affect the predator Population directly. It is obvious that
the harvesting activity does reduce the predator population indirectly by reduc-
ing the availability of the prey to the predator. Adopting a simple logistic growth
for prey population and e > 0, b > 0, ¢ > 0 representing the predator death rate,
capturing rate and conversion rate, respectively, we formulate the problem as:

dx bxy
1 =l =12 = _
(1) G =al—a) - 2
dy cxy
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Where z(t) and y(t) represent the fractions of population densities for prey and
predator at time ¢, respectively. Eqgs. (1) and (2) are to be solved subject to
the biologically meaningful initial conditions z(0) > 0 and y(0) > 0. A qual-
itative investigation of the system described by Eqgs. (1) and (2) reveals that
the long-term behaviour, falls in to three categories: mutual extinction, predator
extinction and coexistence[6].When both prey and predator go extinct for some
values of parameters, the solution asymptotically approaches equilibrium Ej of
the form:

(3) Ey = (0,0).

The eigenvalues of the jacobian matrix evaluated at the Ey reveal that
the mutual extinction equilibrium is a local asymptotically stable node provided
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r 4+ b > 1, regardless of their initial densities. This clearly shows that over-
exploitation of the prey population by constant effort harvesting process together
with high predator capturing rate can lead to mutual extinction. When only
the predator population become extinct, the solution asymptotically approaches
equilibrium FE; of the form:

(4) E,=(1-r0).

The eigenvalues of the jacobian matrix evaluated at the equilibrium FEy
shows that the predator extinction equilibrium is a local asymptotically stable
node provided the predator death is greater than conversion rate, that is, ¢ < e,
another long-term possibility is the predator-prey coexistence equilibrium Fo of
the form:

- E2:<1_T_(C_6)é’(1—r)c—b(c—e))(c—e)).

c ce
The eigenvalue ¢ of the jacobian matrix evaluated at Fo satisfies:

52 (r+b—e—1)c+(c—0b)e?)d  e(c—e)(cr +be—be —c)

6 — =0.
(6) 2 2
Hence, FEs is locally asymptotically stable provided:
b(c — 2 b—1) — be?
(7) u<1 amdc(rJr ) © <1
c(l—r) ec(c —e)

From Eq. (5), we observe that whenever coexistence equilibrium FEy occurs,
the predator extinction equilibrium FE7; becomes an unstable saddle point, since
predator death rate must be less than the conversion rate, that is, ¢ > e.

In this paper we find analytical approximate of system (1-2) using VIM
[7]-[16]. The accuracy of the solutions is demonstrated through some numerical
examples. Four cases are discussed in details and the results are compared with
those found by Adomian decomposition method (ADM) [23].

Over the last decades several analytical /approximate methods have been
developed to solve ordinary and partial differential equations. Some of these
techniques include homotopy perturbation method (HPM) [17]-[22], variational
iteration method (VIM) [7]-[16], etc.

He [14]-[16] proposed a variational iteration method based on the use of
restricted variations and correction functionals which has found a wide appli-
cation for the solution of nonlinear ordinary and partial differential equations.
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This method does not require the presence of small parameters in the differential
equation, and provides the solution (or an approximation to it) as a sequence of
iterates. The method does not require that the nonlinearities be differentiable
with respect to the dependent variable and its derivatives.

2. The variational iteration method. To clarify the basic ideas of
VIM, we consider the following differential equation:

(8) Lu+ Nu = g(t),

where L is a linear operator, N is a nonlinear operator and g(¢) is a homogeneous
term.
According to VIM, we can write down a correction functional as follows:

(9) 1 (£) = 1 (£) + /0 A (Ltin(7) + Nty (r) — g(r)) dr,

where )\ is a general lagrangian multiplier which can be identified optimally via
the variational theory. The subscript n indicates the nth approximation and u,,
is considered as a restricted variation, i.e., du, = 0.

3. Applications. To solve the system (1-2) by means of VIM, at first,
we calculate the common denominator and multiply both sides of the equations
by the obtained common dominator, in order to obtain the Eq.(10) as:

de oy —bry — roy — yx? + 2% — ra? — 23

dt (x+y)

—yr? — 3+ 221 —7r)+ay(l—b—r)

(10) N (x+y)

dy  cry—ery— ey?
dt (x+y)

one can construct the following correction functional,

(11)  zppa(t) = 2n(t)

n /Ot N Yn(T) (%xn(7)> + zp(T) <di7xn(7-)) —(1=b—r)zn(r) "

Yn(7) + yn(r)a3(7) = (1= r)ai(r) + a3 (7)
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(12) ynJrl(t) = yn(t)

N (o)) + 20l (o) = ennl) |
"\ ) +ewd(r) + exn(r)yn(r)

The following stationary conditions can be obtained:

)\,1 |T=t =0 )
14+ XM ‘ —+=0,
(13) o
)‘2 ‘T:t - 0 )
14+ Ao |T:t =0.
We obtain the lagrangian multipliers:
A =-1
(14) Ay = —1.

Substituting the values of A\; and A2 from Eq. (14) in to correction func-
tional of Eqgs. (11) and (12) leads to the following iteration formulae:

Tpt1(t) = n(t)

[ (om0 ) (ga()) = (=0 ) |
0

yn-i-l(t) = yn(t)

(e () + 200 (o) = emat) |
0

Yn(T) + ey (1) + exn(T)yn(7)
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3.1. Case 1. Parameter values used for case 1 are shown in Table 1.

Table 1. Parameter values used for case 1

Case | xg i) b c e r comments
1 05/03]08|0.2]05]0.9 | Ep (stableemutual extinction)

Now we start with an arbitrary initial approximations that satisfy the
initial conditions

16 0
(16) .

Using the initial guess by Eq. (16) and by the iteration formula (15), one
can obtain the following results:

(17) z1(t) = 0.5 — 0.28¢

(18) w1 (t) = 0.3 — 0.09¢

(19) z2(t) = 0.5 — 0.336t + 0.1376t> — 0.0587t> + 0.007252t* + - - -
(20) yo(t) = 0.3 — 0.108t + 0.0162¢> — 0.00387t>

(21) x3(t) = 0.5 — 0.3472t + 0.180208t> — 0.09476t> 4- 0.044127t*

—0.02464¢° + 0.011555¢t° — 0.004523t" + 0.001407¢%
—0.000338¢” + 0.0000647¢'% + - - -

(22) y3(t) = 0.3 — 0.1116t + 0.018684¢% — 0.0025728> — 0.000507t*
+0.0000867t> — 0.0000364t° — 3.8136x 10~5¢7
+1.0524%1076¢8

(23) 24(t) = 0.5 — 0.34944¢ + 0.19124¢> — 0.104500t + 0.056028t*
—0.032292¢° + 0.017096t° — 0.00933t” + 0.00536¢%
—0.00320¢7 + 0.001882¢10 + ...

(24) ya(t) = 0.3 —0.11232¢ + 0.01886t> — 0.00156t> — 0.000622t*
40.000108t% — 0.000049t% 4 4.7822x 10707 — 2.94371x1075¢8
—1.8778x107%¢% +2.0335x 1076410 4. ..
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(25) z5(t) = 0.5 — 0.34988¢ 4 0.19394¢> — 0.10671¢> + 0.05903t*
—0.03367t° + 0.01848t5 — 0.01057¢7 + 0.00608t% — 0.003441¢°
+0.00187¢10 + - ..

(26) ys(t) = 0.3 — 0.11246t + 0.0188383t% — 0.00123181¢> — 0.000463283t*
+0.0000568033t> — 0.00002803t% — 2.95789t7 + 1.27769¢3
—2.011x107%° — 4.68418x 10~ "¢10

And so on. In the same way the rest of the components of the iteration
formula can be obtained.

3.2. Case 2. Parameter values used for case 2 are shown in Table 2.

Table 2. Parameter values used for case 2

Case | xo | o b c e r comments
2 0.51]03|08]02]|05]0.1| E; (stable-predator extinction)

Now we start with an arbitrary initial approximations that satisfy the
initial conditions:
zo(t) =x(0) =0
(27)
yo(t) =y(0) =0
Using the initial guess by Eq. (27) and by the iteration formula (15), one
can obtain the following results,

(28) x1(t) = 0.5 4 0.04¢

(29) 1 (t) = 0.3 —0.09¢

(30) zo(t) = 0.5+ 0.048t + 0.0184t% + 0.0011¢> + 0.000032t*

(31) yo(t) = 0.3 — 0.108t + 0.0162¢> — 0.00099¢*

(32) x3(t) = 0.5 4 0.0496¢ + 0.01304¢> — 0.0005416t> — 0.000337¢*

—0.000122t° — 0.000013t% — 2.1352x 10757 — 1.96771x 10~ "3
—1.14827x 10782 — 4.275324x 10710410 1 ...

(33) y3(t) = 0.3 — 0.1116¢ + 0.02214¢> — 0.002712t> 4 0.00029308*
—0.000035° + 2.73465 x 1075¢% — 3.027857x 10~ 8¢"
+1.188x 107 %8
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(34) x4(t) = 0.5 +0.04992¢ + 0.0123296t> — 0.001226t> — 0.0003025¢*
—0.0000768t° + 4.6x 107520 + 3.14894x 107 %" + 6.9x 10~ "¢8
+6.649141x 1078 — 2.3057x 1079410

(35) wa(t) = 0.3 —0.11232¢ + 0.0238464t> — 0.003553t> + 0.000414¢*
—0.00005t° + 4.5328 x 107646 — 8.21347x 10737
+1.94445% 107 %% — 3.11349x 10722 — 2.2x 10719410 4 ...

(36) z5(t) = 0.5+ 0.049984¢ + 0.01226t> — 0.0014827t> — 0.00026116t*
—0.000044497t> 4+ 0.00001179t% + 3.054x 10~6¢7
+3.51522x1077t® — 9.3075x 10~ %¢? — 2.502x 107810 4 ...

(37) ys(t) = 0.3 — 0.112464t + 0.02429049t> — 0.0038529¢> + 0.000462493t*
—0.000047929t° + 4.2648x1075¢% + 9.71457x 107247
—2.94208x 1078 — 3.7068x 1072t — 5.92532x 10~ 19¢10 4 ...

And so on. In the same way the rest of the components of the iteration
formula can be obtained.

3.3. Case 3. Parameter values used for case 3 are shown in Table 3.

Table 3. Parameter values used for case3

Case | xg i) b c e r comments
3 03106 |05]|05] 03] 0.1]| Ez (stable-coexistence )

Now we start with an arbitrary initial approximations that satisfy the
initial conditions:

(38) zo(t) =x(0) =0.3
yo(t) = y(0) = 0.6

Using the initial guess by Eq. (38) and by the iteration formula (15), one
can obtain the following results,

(39) a1(t) = 0.3+ 0.072¢

(40) yi(t) = 0.6 —0.072¢
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(41) x5(t) = 0.3 +0.0792¢ + 0.00432t> — 0.000691¢>
(42) 2(t) = 0.6 — 0.0792t + 0.01512¢* — 0.000864¢>

(43) z3(t) = 0.3 +0.07992¢ + 0.005184¢t> — 0.001051484¢> — 0.000189¢*
—4.8049 x 107%¢° — 5.8724352 x 107 %% + 3.46246 x 10~ "¢’
—3.14424 x 10728 — 2.06391 x 107%¢° + 7.430082 x 10~ 110

(44) y3(t) = 0.6 — 0.07992t + 0.018144¢> — 0.001957824¢> + 0.0000886t*
—3.79468x 107 7% + 1.617408x 10~ "¢% — 1.492992x 10~8¢"

(45) z4(t) = 0.3 + 0.079992¢ + 0.0053136t> — 0.0011375t> — 0.00024943t*
+3.222x1075¢% + 5.79944x 107645 + 8.23651x 10~ ¢"
+3.394408x 10785 — 2.429502x 10~ 5¢?

—1.52498%x 107 9¢10 + ...

(46) y4(t) = 0.6 — 0.079992¢ + 0.018597t2 — 0.0022458t> + 0.0001217¢*
+8.06091x 107 8#° + 1.78094x 10~ "5 — 2.274363x 10~ "'
+2.5336x 107345 — 1.94796 x 1072 + 2.965963x 101910 + ...

(47) z5(t) = 0.3 + 0.0799992¢ 4 0.00533t> — 0.001152834336t°
—0.000260956t* + 6.5696x 10~%¢° + 8.4282x 10745
+7.07789x 107 7¢7 — 1.2185x 10~ "¢
—4.27059%x1078¢° — 3.25465x 107710 4 . ..

(48) y5(t) = 0.6 — 0.0796224¢ 4 0.01844883t% — 0.002342233¢3
+0.00016118917t* — 1.1576x1075¢° — 1.046x10~6¢5
—2.5511x 10777 + 4.66417x 10738 — 4.41784x 10~ %¢°
—7.2688x 10710410 1 ...

And so on. In the same way the rest of the components of the iteration formula
can be obtained.

3.4. Case 4. Parameter values used for case 4 are shown in Table 4.

Table 4: Parameter values used for case4

Case | o | Yo b c e r comments
4 05020505 0.1] 0.2 | Ex(stable-coexistence)
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Now we start with an arbitrary initial approximations that satisfy the
initial conditions

49 "
(49) 0

Using the initial guess by Eq. (49) and by the iteration formula (15), one
can obtain the following results,

(50) x1(t) = 0.5 + 0.055¢

(51) y1(t) = 0.2 +0.036t

(52) x2(t) = 0.5 +0.0715t — 0.0067775t> — 0.0013695t> — 0.00006881¢*
(53) ya(t) = 0.2 + 0.0468t + 0.003442¢* + 0.00022¢

(54) x3(t) = 0.5+ 0.07645t — 0.011819975t> — 0.002022698417¢>

+0.00021469t* + 0.000066233t> + 2.092397x 10~6¢6
—7.203366x 10 "t" — 8.99976x 10348 — 1.94341x 10~ ¢Y
+3.89469x 10710410 4 ...

(55) y3(t) = 0.2 + 0.05004¢ + 0.00486838t> + 0.0002228067333t>
—0.0000341309t* — 4.8145x107%4° — 4.48292x 10~ "#5
—2.4999x 107 8¢7 — 7.59759x 101043 4 ...

(56) x4(t) = 0.5+ 0.077935¢t — 0.0143233t> — 0.0018866¢> + 0.0005497452¢*
+0.000079463t> — 0.00001651t5 — 3.3788x 106"
+2.573138193x 10~ "¢® + 1.026083x 10~ "¢°
—2.009319x 10719419 . ..

(57) ya(t) = 0.2 +0.051¢ + 0.0053569t* + 0.000143315¢>
—0.000057589t* — 5.27847x 10754 + 9.580461x 10~ 8¢°
+1.176407808x 10~ "¢ + 1.7363125x 10~ 8¢®
+1.053836x 10722 — 7.0356395x 1011410 4 - ..
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(58) z5(t) = 0.5 4 0.078380t — 0.015379441t* — 0.00160042077t>
+0.000717328t* + 0.0000377t> — 0.00003352117¢5
—0.0000014463t™ + 0.00000136764¢° + 7.92469 x 10~5¢°
—4.96455%x 107 8¢10 4. ..

(59)  ys(t) = 0.2+ 0.0513036t + 0.005516518> + 0.000082204¢>
—0.0000618682t* — 3.0147x 107> + 6.179182x 10~ "¢5
+1.47148% 107 "¢7 4 1.8342956 x 10~ 2% — 3.564454x 10~ %¢°
—5.81218x 1071010 4 ...

And so on. In the same way the rest of the components of the iteration
formula can be obtained.

4. Numerical results. For comparison with the results done by
ADM [23], some numerical results of z(¢), y(t) VIM and ADM [23] are presented
in Tables.(5-8).

Table 5. Comparison between results of VIM and ADM for case 1

t Xapm Xvim Yapum Yvrm
0.1 | 0.466845 | 0.466849 | 0.288936 | 0.288940
0.2 | 0.437017 | 0.437011 | 0.278242 | 0.278250
0.3 | 0.410035 | 0.410015 | 0.267909 | 0.267919
0.4 | 0.385485 | 0.385474 | 0.257929 | 0.257382
0.5 | 0.362972 | 0.363064 | 0.248294 | 0.248295

Table 6. Comparison between results of VIM and ADM for case 2

i Xapm Xvim Yapu Yviu
0.1 | 0.505121 | 0.505119 | 0.288990 | 0.288992
0.2 | 0.510477 | 0.510474 | 0.278446 | 0.278448
0.3 | 0.516058 | 0.516056 | 0.268345 | 0.268346
0.4 | 0.521853 | 0.521853 | 0.258666 | 0.258665
0.5 | 0.527850 | 0.527854 | 0.249389 | 0.249386
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Table 7. Comparison between results of VIM and ADM for case 3

t

Xapm

Xvim

Yapum

Yvrm

0.1
0.2
0.3
0.4
0.5

0.308052
0.316203
0.324446
0.332772
0.341172

0.308052
0.316203
0.324446
0.332777
0.341172

0.592184
0.584728
0.577618
0.570842
0.564386

0.592219
0.584794
0.577711
0.570957
0.564518

Table 8. Comparison between results of VIM and ADM for case 4

i Xapm Xvim Yapum Yviu
0.1 | 0.507695 | 0.507682 | 0.205198 | 0.205185
0.2 | 0.515064 | 0.5150492 | 0.210509 | 0.210481
0.3 | 0.522102 | 0.522092 | 0.215932 | 0.215889
0.4 | 0.528806 | 0.528807 | 0.221466 | 0.221407
0.5 | 0.535174 | 0.535190 | 0.227112 | 0.227037

5. Conclusion. Variational iteration method is employed to approx-
imate the solution of the ratio-dependent predator-prey system with constant
effort prey harvesting. The results obtained here were compared with results
of Adomian decomposition method. There is less computations involved in the
proposed method as compared to ADM.
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