
Serdica J. Computing 2 (2008), 369–402

CONCEPTUAL INFORMATION COMPRESSION AND

EFFICIENT PATTERN SEARCH

Galia Angelova, Stoyan Mihov

Abstract. This paper introduces an encoding of knowledge representa-
tion statements as regular languages and proposes a two-phase approach to
processing of explicitly declared conceptual information. The idea is pre-
sented for the simple conceptual graphs where conceptual pattern search is
implemented by the so called projection operation. Projection calculations
are organised into off-line preprocessing and run-time computations. This
enables fast run-time treatment of NP-complete problems, given that the
intermediate results of the off-line phase are kept in suitable data struc-
tures. The experiments with randomly-generated, middle-size knowledge
bases support the claim that the suggested approach radically improves the
run-time conceptual pattern search.

1. Introduction. Knowledge representation arose in Artificial Intel-
ligence (AI) in the late 1970s as a discipline studying formalisms for explicit

ACM Computing Classification System (1998): E.4, F.1.1, G.2.3, G.4, I.2.4.
Key words: data compaction and compression, finite automata, applications, efficiency,

semantic networks.

370 Galia Angelova, Stoyan Mihov

declarative encoding of world semantics. Following the classical AI paradigm,
most computations are still performed in run-time, which limits the efficiency of
the emerging semantic technologies. On the other hand computational linguistics
provides fast text analysis recently. The commercial systems analyse input text
with run-time speed of more than 100000 words per second. This efficiency is due
to a two-phase approach for (i) special off-line preprocessing of the necessary lin-
guistic resources and (ii) run-time search within certain carefully prepared data
structures. Very large morphological lexicons are encoded off-line as minimal
acyclic Finite-State Automata (FSA) [1] and the run-time text analysis is turned
to automaton look-up in linear time, depending on the length of the input word-
form only. There are algorithms for direct building of the minimal acyclic FSA,
by incremental construction of the FSA given a lexicographically-sorted list of all
words in the respective finite regular language [2, 3].

In this paper we propose to implement conceptual search using FSA in
a two-phase approach: (i) off-line computations, which deal with the (relatively)
static knowledge base statements and (ii) run-time conceptual search, given user
requests, by FSA look-ups. Actually the suggestion is to interpret logical for-
mulas as words in certain regular language; thus we extend the computational
linguistics’ ideas to the positive, existentially-quantified conjunctive formulas that
can be considered as knowledge representation statements in a formally-defined
closed world. This proposal has been presented informally in [4, 5]. Here we focus
on the precise mathematical definitions, the off-line preprocessing algorithm, the
complexity issues and the experiments with two test data sets.

The article is structured as follows. Section 2 presents important notions
and recalls basic facts. Section 3 introduces an FSA-based encoding of simple
conceptual graphs with binary conceptual relations and shows that all their injec-
tive generalisations can be encoded off-line as a minimal FSA. Section 4 presents
an algorithm for performing injective projection in run-time. Section 5 consid-
ers the complexity of the main algorithms. Section 6 discusses proof-of-concept
experiments with two randomly generated, middle-size knowledge bases, which
test the feasibility of the approach. Section 7 contains some discussion and the
conclusion.

2. Basic Notions.

2.1. Conceptual Graphs’ Support. Conceptual Graphs (CGs) are a
kind of semantic networks which are founded both on logic and graph theory [6].
They consist of concept types (denoting the entities, attributes, states and events
in the world) and relation types (encoding the n-ary conceptual relations which
show how the concept types’ instances are interconnected). As ordinary graphs,

Conceptual Information Compression and Efficient Pattern Search 371

CGs are bipartite graphs where the concepts are drawn as rectangles and the
conceptual relations as ellipses. The CG graphical structure visualises the identity
of the variables, constants and predicates in the corresponding logical statements,
which encode explicitly world knowledge. CGs do not exist as isolated declarative
statements; there is a context fixing the background ontological framework where
the particular semantic assertions hold – so called support [7].

Definition 1. A support is a 4-tuple S = (TC , TR, I, τ) where:

• TC is finite, partially ordered set of distinct concept types. The partial order
defines the hierarchy of concept types: for x, y ∈ TC , x ≤ y means that x
is a subtype of y. Then x is a specialisation of y and y is a generalisation
of x; y subsumes x. The universal type > (top) subsumes all types in TC .
All types in TC subsume the absurd type ⊥ (bottom);

• TR is finite, partially ordered set of distinct relation types. The partial order
defines the hierarchy of relation types. TC ∩TR = ∅. Each R ∈ TR has arity
2 and holds between two different instances of concept types x, y ∈ TC or a
concept type x ∈ TC . A pair (c1max R, c2max R) ∈ TC × TC is associated to
each relation type R ∈ TR; it defines the greatest concept types that might
be linked by the relation type R. R holds between instances of the concept
types x, y ∈ TC if x ≤ c1max R and y ≤ c2max R. All pairs (c1max R, c2max R)
are called star graphs or basis of the support. If R1, R2 ∈ TR and R1 ≤ R2,
then c1max R1 ≤ c1max R2 and c2max R1 ≤ c2max R2. The lattice of relation
types also has the universal type > as top node and the absurd type ⊥ as
the bottom node;

• I is a set of distinct individual markers which refer to specified concept
instances. TC ∩ I = ∅ and TR ∩ I = ∅. The generic marker ∗, where ∗ /∈
(TC ∪ TR ∪ I), refers to an unspecified individual instance of some specified
concept type x. Thus concepts have instances, in contrast to relations. The
members of I are not ordered but i ≤ ∗ for all i ∈ I;

• τ is a mapping from I to TC and associates individual instances to concept
types. If τ(i) = x1, x2, . . . , xn for i ∈ I and x1, x2, . . . , xn ∈ TC , then
there is a lower concept type to which i belongs (e.g. x1) and x1 ≤ xj for
2 ≤ j ≤ n. In other words, each individual belongs to some type and its
supertypes, within one hierarchy branch. Thus τ defines the conformity of
individuals to concept types. If τ(i) = x for i ∈ I and x ∈ TC then i can be
generalised by x : ∗ which denotes an unspecified individual instance of x.

372 Galia Angelova, Stoyan Mihov

Definition 2. A simple conceptual graph (SCG) G, defined over a
support S, is a connected, finite bipartite graph (V = VC ∪ VR, U, λ) where:

• The nodes V are defined by VC – the set of concept nodes or c-nodes and
VR – the set of relation nodes or r-nodes. VC 6= ∅, i.e. each SCG contains
at least one c-node. For x ∈ VC , type(x) denotes the label of x ∈ TC ;

• The edges U are defined by a set of ordered pairs (x, r) or (r, y), where x,
y ∈ VC and r ∈ VR. Thus the edges are directed either from a c-node to a
r-node – like (x, r), or from a r-node to a c-node – like (r,y). The edges
(x, r) are called incoming arcs to the r-node r while the edges (r, y) are
called outgoing arcs from the r-node r. For every r-node r ∈ VR, there is
one incoming and one outgoing arcs, incident with r;

• The mapping λ defines correspondences between the elements of S and the
nodes of G. It associates labels to the elements of VC ∪ VR. Each c-node
c ∈ VC is labeled by a pair (C, marker(C)), where C ∈ TC and marker(C) ∈
I ∪ {∗}. A c-node with generic marker is called a generic node, it refers
to an unspecified individual of the specified concept type. A c-node with
individual marker is called an individual node, it refers to a specified
instance of the concept type. Each r-node r ∈ VR is labeled by a relation
type R ∈ TR. The first argument of R is mapped to the c-node linked to the
incoming arc of r while its second argument is mapped to the c-node linked
to the outgoing arc of r.

Example 1. Figure 1 introduces a sample support:

• TC = {STATE, EVENT, ENTITY, ACT, ANIMATE, PHYS-OBJECT,
LOVE, EAT, ANIMAL, PIE, PERSON} with partial order shown at Fig. 1;

• TR = {AGNT, OBJ, EXPR, POSS, PTNT} with partial order and star
graphs shown at Figure 1. These labels stand for AGeNT, OBJect, EXPeRi-
encer, POSSesor and PaTieNT respectively. Since PTNT≤OBJ, the argu-
ments of PTNT in the corresponding star graph are specialisations of the re-
spective arguments of OBJ, i.e. ACT≤ACT and PHYS-OBJECT≤ENTITY;

• I = {John, Sue} which are not ordered;

• τ(John) = PERSON, τ(Sue) = PERSON.

Figure 2 presents a Knowledge Base (KB) of two simple conceptual graphs
G1 and G2 defined over the support in Figure 1. In natural language they mean:
G1 ’John eats Sue’s pie’ and G2 ’There exists a person who loves himself/herself
and loves Sue who eats his/her pie’. By default the generic markers are omitted,
e.g. the concept types (EAT,∗) in G1 is labeled by EAT. The individual nodes are

Conceptual Information Compression and Efficient Pattern Search 373

Fig. 1. Partial order of concept and relation types and star graphs for the relation types

Fig. 2. Graphical representation of the sample SCGs G1 and G2

denoted as TYPE:individual, e.g. the c-node PERSON:John in G1. The graph
G2 is called cyclic since its underlying ordinary graph is a cyclic one.

According to the definitions in [6, 7], SCGs are multi-graphs and have
multi-edges – i.e, several edges between a r-node and one of its c-neighbours.
This may happen for the general case of n-ary conceptual relations, when the
edges between the r-nodes and their c-neighbours are labeled, so multi-edges may
appear as shown at Fig. 3A. But we consider binary conceptual relations only,
with one incoming and one outgoing arc; in this case multi-edges are impossible
but loops might appear if a conceptual relation holds from/to one instance of
a given c-node as shown at Fig. 3B. However, definition 1 introduces supports
over relation types R ∈ TR which hold either between instances of two distinct
concept types, or between two distinct instances of one concept type. Therefore,

374 Galia Angelova, Stoyan Mihov

we consider SCGs which are equivalent to directed bipartite graphs with at most
one edge between each two vertices. Such graphs may contain cycles, like G2 in
Figure 2, but they contain no multi-edges and no loops.

Fig. 3A. Multi-edges numbered 1 and
2 for some n-ary conceptual relation

Fig. 3B. Loops for binary conceptual
relations

2.2. Logical Interpretation of Simple Conceptual Graphs.

Definition 3 ([6]). We define the formula operator φ which translates
a SCG into a formula in the first-order predicate calculus. If G is a SCG, let φG
be a formula constructed as follows:

• If G contains k generic c-nodes, assign a distinct variable x1, x2, . . . , xk

to each one;

• For each c-node c of G, let identifier(c) be the variable assigned to c if c is
a generic node or marker(c) if c is an individual node;

• Represent each c-node c of G as a monadic predicate whose name is the
same as type(c) and whose argument is identifier(c);

• Represent each r-node r of G as a binary predicate whose name is the same
as type(r). For each i, i = 1, 2, let the i-th argument of the predicate be the
identifier of the c-node linked to the i-th arc of r;

• Build φG as a concatenation of a quantifier prefix ∃x1∃x2 . . . ∃xk to a body
consisting of the conjunction of all the predicates for the c-nodes and r-nodes
of G.

It is shown in [8] that SCGs are equivalent to the positive, conjunctive and
existential fragment of first order logic without functions. As seen in definition
3, the logical interpretation of a SCG with binary conceptual relations contains
binary predicates, one per each binary relation r. We shall call these binary
predicates elementary conjuncts. In the next sections, we shall record them as
triple of labels c1 r c2 where the concepts c1, c2 are the first and second arguments
of the relation r.

Conceptual Information Compression and Efficient Pattern Search 375

Example 2. We present the logical formula corresponding to the SCG
G2 in Example 1:

’There exists a person who loves himself/herself and loves Sue who eats
his/her pie’:
∃x∃y∃z∃u∃v PERSON(x) & LOVE(y) & LOVE(z) & PIE(u) & EAT(v) &
& PERSON(Sue) & expr(x ,y) & obj(y ,x) & expr(x ,z) &
& obj(z, PERSON(Sue)) & poss(x ,u) & ptnt(v ,u) & agnt(v , PERSON(Sue))

There are seven elementary conjuncts in the logical interpretation of G2,
corresponding to the seven binary conceptual relations in the underlying bipartite
graph.

Another specific issue about CGs is that VC and VR may contain nodes
with duplicating labels, because the mapping λ in definition 2 may associate
repeating labels to the elements of VC ∪ VR. For instance, Figure 4 contains a
SCG which (roughly) means: ’There exist an arc, which has as part a brick and
(another) brick ’. When building the logical formula according to definition 3,
the generic c-nodes BRICK are juxtaposed distinct variables that are existentially
quantified, i.e. these nodes represent different unspecified instances of the concept
type BRICK. The r-nodes PART are duplicated too, because the conceptual
relations hold between different instances of the duplicating c-nodes.

Fig. 4. Duplicating labels of concept and relation nodes (example from [6])

2.3. Projection.

Definition 4 ([6]). A projection π is a graph morphism defined as
follows. Let G and H be two SCG with binary conceptual relations. Then π:
G → H is a graph πG, where πG ⊆ H and:

• For each concept c in G, πc is a concept in πG where type(πc) ≤ type(c).
If c is individual concept, then c = πc.

• For each conceptual relation r(c1, c2) in G, πr is a conceptual relation
in πG where type(πr) ≤ type(r) and πr holds between πc1 and πc2, i.e.
πr(πc1, πc2) is in πG.

376 Galia Angelova, Stoyan Mihov

Definition 5 ([9]). Let G and H be two SCGs. An injective projection
π is a kind of projection such that π : G → H is a graph πG, where πG is
isomorphic to G.

Example 3. The projection of a query G onto a KB graph H finds
G-compliant conceptual patterns in H. The injective projection supports the
semantic extraction when processing world knowledge. Obviously, there can be
different projections of G to H. The query G at Figure 5 has empty projection
onto G1 but several non-empty projections onto G2.

Fig. 5. Injective projection π1 and projection π2 from a query graph G onto G2. For
π1, the two elementary conjuncts of G are mapped onto two distinct elementary
conjuncts of G2. For π2, both elementary conjuncts of G are mapped onto one

elementary conjunct of G2

The projection mappings depend on the graph nodes but CGs can contain
’redundant’ nodes. A specialisation rule simplify is defined in [6], to delete dupli-
cating r-nodes between the same concept instances (these r-nodes yield duplicat-
ing predicates in the logical interpretation and can be deleted, since X&X = X).
In addition, SCGs can contain unnecessary duplication of individual c-nodes, like
the SCGs G and H at Figure 6. These graphs have identical logical interpreta-
tion, they both project to their ’normal form’ but G does not project onto H
and vice versa. Duplicated individual c-nodes can be merged in linear time by a
trivial algorithm [8].

Definition 6. A SCG G is in normal form when it contains no du-
plicating r-nodes holding between the same concept instances and no duplicating
c-nodes with the same individual markers.

Sowa shows in [6] that given two SCGs H and G where H is specialisation
of G (i.e. H ≤ G), there is a projection from G to H. Chein and Mugnier prove
the reciprocal property in [7]. In this way the ground operations over SCGs are

Conceptual Information Compression and Efficient Pattern Search 377

Graph G Graph H ’normal form’ of G and H

φ(G) = φ(H) = ∃xC(x)&T (a)&T (a)&r(x, T (a))&s(x, T (a))&u(x, T (a))

Fig. 6. Two SCGs G and H which are incomparable by injective projection [8]

either based on projection, as a particular graph morphism, or on specialisation
rules and their reverse generalisation rules.

The calculation of CG projection challenges the researchers for more than
twenty years. Given a query graph, its mappings to the KB facts are computed in
run-time graph by graph. Counting all projections is an interesting computational
problem too. The algorithms for computing projection are either based on first
order logic and Prolog inference mechanisms or rely on graph theory. Given two
SCGs G and H, it is NP-complete to decide whether H ≤ G. However there are
large classes of SCGs for which polynomial algorithms for projection exist when
the underlying ordinary graphs are trees [9, 10]. Projection can be also computed
by translating it to the maximum clique problem, to improve the performance for
specific SCG types [11]. Thus the most efficient projection calculations are based
on algorithms solving equivalent problems in graph theory. These complexity
results hold for the case of run-time projection calculation.

2.4. Finite State Automata.

Definition 7. A finite state automaton (FSA) A is a 5-tuple A =
〈Σ, Q, q0, F,∆〉, where Σ is a finite alphabet, Q is a finite set of states, q0 ∈ Q
is the initial state, F ⊆ Q is the set of final states, and ∆ ⊆ Q × Σ × Q is the
transition relation. The transition 〈q, a, p〉 ∈ ∆ begins at state q, ends at state
p and has the label a. A deterministic finite state automaton is a FSA
A = 〈Σ, Q, q0, F,∆〉, where ∆ is a function ∆ : Q × Σ → Q.

Definition 8. Let A = 〈Σ, Q, q0, F,∆〉 be a FSA. A path c in A is
a finite sequence of k > 0 transitions: c = 〈q1, a1, q2〉〈q2, a2, q3〉 · · · 〈qk, ak, qk+1〉,
where 〈qi, ai, qi+1〉 ∈ ∆ for i = 1, . . . , k.

The integer k is called the length of c. The state q1 is called beginning of
c and qk+1 is called the end of c. The string w = a1a2 · · · ak is called the label of
c. The null path of q ∈ Q is 0q, beginning and ending in q with label ε, where ε
is the empty symbol. A successful path starts at q0 and ends at a final state.

378 Galia Angelova, Stoyan Mihov

Definition 9. Let A = 〈Σ, Q, q0, F,∆〉 be a FSA. Let Σ∗ be the set of
all strings over the alphabet Σ, including the empty symbol ε. The generalised
transition relation ∆∗ is the smallest subset of Q × Σ∗ × Q with the following
closure properties:

• For all q ∈ Q we have 〈q, ε, q〉 ∈ ∆∗;

• For all q1, q2, q3 ∈ Q and w ∈ Σ∗, a ∈ Σ: if 〈q1, w, q2〉 ∈ ∆∗ and 〈q2, a, q3〉 ∈
∆, then 〈q1, wa, q3〉 ∈ ∆∗.

Definition 10. The formal language L(A) accepted by a FSA A =
〈Σ, Q, q0, F,∆〉 is the set of all strings, which are labels of paths leading from the
initial to a final state:

L(A) := {w ∈ Σ∗ | ∃ q ∈ F : 〈q0, w, q〉 ∈ ∆∗}.

These strings will be called words of the language L(A).

Languages accepted by FSA are regular languages. Every finite list of
words over a finite alphabet of symbols is a regular language. Given a finite
regular language L, there are algorithms which construct a deterministic FSA
which accepts this language.

The Myhill-Nerode theorem (see [12]) states that among the deterministic
automata that accept a given language L, there is a unique automaton (excluding
isomorphisms) that has a minimal number of states. It is called the minimal de-
terministic automaton of the language L. As introduced in [13], the minimization
algorithm for a deterministic FSA with m states has complexity k ×m × log(m)
where k is some constant which depends linearly on the size of the input alphabet.
For comparison, the direct construction of the minimal acyclic automaton A in
the case of finite regular languages is O(n log(m)), where n is the total number
of alphabet symbols in the input list of words and m is the number of the states
in A [3].

Definition 11. Let A = 〈Σ, Q, q0, F,∆〉 be a FSA. Let Σ+ be the set
of all strings w over the alphabet Σ, where |w| ≥ 1. The automaton A is called
acyclic iff for all q ∈ Q there exist no string w ∈ Σ+ such that 〈q, w, q〉 ∈ ∆∗.

Definition 12. A deterministic finite state automaton with mar-
kers at the final states A is a 7-tuple A = 〈Σ, Q, q0, F,∆, E, µ〉, where Σ is a
finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the
set of final states, ∆ : Q × Σ → Q is the transition function, E is a finite set of
markers, and µ: F→E is a function assigning a marker to each final state.

Conceptual Information Compression and Efficient Pattern Search 379

We notice that a deterministic FSA with markers at the final states jux-
taposes markers to the accepted words. This property will be very helpful for the
constructions that are presented in the next sections. Let us recall the following
well-known facts:

Proposition 1. A necessary and sufficient condition for any determin-
istic automaton (in which every path can be extended to a successful one) to be
acyclic is that it recognises a finite set of words. Given a finite regular language
L, there are algorithms for construction of an acyclic deterministic FSA, which
recognises L.

Proposition 2. Let A = 〈Σ, Q, q0, F,∆〉 be a deterministic FSA and
w = a1 · · · an is a word consisting of Σ symbols. The time complexity of a look-up
in A with w is O(n).

3. Off-line encoding of SCGs as finite state automata. We
shall deal with the set of all normalised SCGs with binary conceptual relations
in certain momentary status of the knowledge base, which is defined according
to support S.

3.1. Linear encoding of SCGs as strings of support symbols. De-
finition 3 shows that a SCG’s logical formula contains binary predicates rel(c 1,c2),
where rel is a r-node label and c1,c2 are either existentially-quantified variables
for the SCG generic c-nodes, or individual markers for the individual c-nodes.
We notice that the usage of specific indices at the off-line phase will prevent the
run-time recognition of labels, when arbitrary queries will be posed to the system.
To avoid any graph-specific indexation in the off-line encoding, we can replace the
variables by their respective c-nodes’ labels. We can also replace the individual
markers by the string type:marker, where type is the label of the corresponding
c-node in TC (this was already done at Fig. 2 where PERSON:Sue denotes an
individual c-node of type PERSON). Thus we can encode the monadic predicates
of the logical formula within the binary ones. Then the binary predicates

rel1(concept11,concept12) & & reln(conceptn1,conceptn2)

can be linearised as a string of triples - support symbols:

concept11 rel1 concept12 concept21 rel2 concept22 . . . conceptn1 reln conceptn2

380 Galia Angelova, Stoyan Mihov

where concept ij , 1 ≤ i ≤ n, j = 1, 2 are either concept type labels or strings
type:marker. This sequence of labels, however, fails to capture the topological
structure of the SCGs.

Example 4. To study the graph structures, let us consider Figure 7. It
contains distinct configurations of connected elementary conjuncts with duplicat-
ing c-nodes:

• There exists love felt by a person and directed to another person, Fig. 7A,

• There exists a person who loves himself/herself, Fig. 7B,

• There exists a person who feels love and is object of (another) love, Fig. 7C.

(A) (B) (C)

Fig. 7. Two connected conjuncts expr(LOVE, PERSON) & obj(LOVE, PERSON): the same
type labels express three different topological structures of concept instances

Obviously, the sequence of conjunct labels triple by triple

LOVE EXPR PERSON LOVE OBJ PERSON

fails to encode the identity of the relation arguments. However, we can invent
an enumeration of the positions of the equivalent arguments, thus encoding the
information about the classes of arguments’ equivalence. Then the indices of
the identical arguments can be associated to the linear record as annotations.
We consider the structural configurations at Figure 7. There are 4 argument
positions in the linear record of two connected elementary conjuncts which can
be numbered by 1, 2, 3 and 4. Then the three graphs can be encoded as follows:

Position 1 Position 2 Position 3 Position 4 Annotation
Fig.7A: LOVE EXPR PERSON LOVE OBJ PERSON 1=3
Fig.7B: LOVE EXPR PERSON LOVE OBJ PERSON 1=3, 2=4
Fig.7C: LOVE EXPR PERSON LOVE OBJ PERSON 2=4

Conceptual Information Compression and Efficient Pattern Search 381

The associated annotation, which explicates the sets of identical argu-
ments, helps to uniquely distinguish the three graphs at Figure 7A, 7B and 7C.

Definition 13. Let S = (TC , TR, I, τ) be a KB support according to De-
finition 1. Let us define an alphabet of support symbols Σ = {x | x ∈ TC or x ∈
TR} ∪ {x : i | x ∈ TC , i ∈ I and τ(i) = x}. Let us order the m symbols of Σ
using certain (linear) order Ω = 〈a1, a2, . . . , am〉.

Let G be a normalised SCG defined according to S, with n conceptual
relations which have common arguments since G is connected. Let G have k
individual c-nodes and p distinct generic c-nodes, i.e. G has k+p c-nodes which
occupy the positions of 2 × n relation arguments. A linearised representation of
G is constructed as follows:

• Let f(G) be a logical formula, juxtaposed to G according to definition 3:
∃x1∃x2. . .∃xp

type1(x1)&. . . &typep(xp)& typep+1(marker1)&. . . & typep+k(markerk)&
rel1(concept11,concept12) & . . . & reln(conceptn1,conceptn2)

where typei ∈ TC for 1 ≤ i ≤ p + k, reli ∈ TR for 1 ≤ i ≤ n, markeri ∈ I for
1 ≤ i ≤ k, and conceptij for 1 ≤ i ≤ n, j = 1, 2 is either one of the variables
x1,. . . ,xp or one of the individuals typep+1(marker1),. . . ,typep+k(markerk);

• For all arguments conceptij , 1 ≤ i ≤ n, j = 1, 2 which are equal to a
variable xu where 1 ≤ u ≤ p, replace the argument conceptij by the string
typeu:xu where typeu(xu) is a monadic predicate in f(G);

• For all arguments conceptij , 1 ≤ i ≤ n, j = 1, 2 which are equal to
typep+u(markeru) where 1 ≤ u ≤ k, replace the argument conceptij by the
string typep+u:markeru where typep+u(markeru) is a monadic predicate in
f(G);

• Take the binary predicates in f(G):
rel1(concept11,concept12) & . . . & reln(conceptn1,conceptn2)

where conceptij for 1 ≤ i ≤ n, j = 1, 2 is either one of the generic c-nodes
type1:x1, type2:x2, , typep:xp, or one of the individual c-nodes
typep+1:marker1, , typep+k:markerk.
Represent them as a string seq(G) of n triples with 3 × n positions:

concept11 rel1 concept12 conceptn1 reln conceptn2.
Disregard all substrings ′:x1

′, ′:x2
′,. . . , ′:xp

′ in ′type1:x1
′, . . . , ′typep:xp

′ re-
spectively, thus pretending that seq(G) consists of Σ symbols only, and sort
seq(G) triple by triple according to Ω. When rearranging the labels ′type1

′,

382 Galia Angelova, Stoyan Mihov

′type2
′, . . . , ′typep

′ in the sorting process, move together with them the as-
sociated substrings ′:x1

′, . . . , ′:xp
′. If two neighbouring triples consist of

identical symbols of Σ, order them in increasing order according to the in-
dices of the variables x1, x2,. . . ,xp which are present as substrings in the
arguments’s labels ′type1:x1

′, ′type2:x2
′, . . . , ′typep:xp

′;

• Let the sorted sequence of n triples be sortedSeq(G). Without loss of general-
ity, it can be denoted by concept11 rel1 concept12 . . . conceptn1 reln conceptn2.
Consider the relation arguments and assign a position index v = 2∗(i−1)+j
to each argument conceptij for 1 ≤ i ≤ n, j = 1, 2. Then sortedSeq(G) can
be represented as

argument1 rel1 argument2 . . . argument2n−1 reln argument2n

Build classes of indices as follows: for every set of q equal arguments 2 ≤
q ≤ 2 × n where

argumentv1 = argumentv2 = · · · · · · = argumentvq

construct the string V = ′v1 = v2 = · · · = vq
′, where 1 ≤ vi ≤ 2 × n for

i = 1, 2, . . . , q and v1 < v2 < · · · < vq.

V will be called a class of equivalent arguments for sortedSeq(G).

• Let sortedSeq(G) have z distinct sets of equal arguments <1, <2, . . . , <z.
For every set <i, let the class of equivalent arguments be Vi which is a string
of digits and the symbol ′=′ for 1 ≤ i ≤ z. Sort the list [V1, . . . , Vz] in
ASCII, rename the sorted list items as [V1, V2, . . . , Vz] and construct the
string

annotation(G) = ′V1,V2,. . . ,Vz
′

• In sortedSeq(G) delete the substrings ′:x1
′, . . . , ′:xp

′ from the arguments
conceptij , 1≤i≤n, j = 1, 2 which have the format ′type1:x1

′, . . . , ′typep:xp
′.

After this deletion, sortedSeq(G) contains only symbols of Σ, i.e. labels in
TC ∪ TR ∪ I.

• The pair 〈sortedSeq(G), annotation(G)〉 will be called linear record of G
with respect to f(G) and Ω.

Example 5. The linear records of the three SCGs at Fig. 7 are shown
in Example 4. They are unique with respect to the order EXPR<LOVE<OBJ<
PERSON since the SCGs’ elementary conjuncts contain different relations and
the sorting arranges the labels unambiguously. Thus the annotations of these 2-
conjunct SCGs are unique. However, there are SCGs with multiple annotations

Conceptual Information Compression and Efficient Pattern Search 383

when the graphs contain multiple identical triples. Let us consider the subgraph of
G2 at Fig. 8 with two triples ′LOVE EXPR PERSON′ where LOVE denotes different
generic instances. Obviously, different logical formulas can be built for this graph,

Fig. 8. A subgraph of G2 with multiple equivalent logical formulas (due to isomorphism)

depending on the assignment of variables to generic concept instances. If x1 is
assigned to PERSON and x2 and x3 are assigned to the two generic instances of
LOVE, this SCG will have two logical formulas due to the isomorphism between
the variables x2 and x3:
∃x1∃x2∃x3 PERSON(x1)&LOVE(x2)&LOVE(x3)&expr(x2,x1)&expr(x3,x1)&obj(x2,x1)

and
∃x1∃x2∃x3 PERSON(x1)&LOVE(x2)&LOVE(x3)&expr(x2,x1)&expr(x3,x1)&obj(x3,x1).

Two annotation markers will be built using these formulas: ′1=5, 2=4=6′

and ′3=5, 2=4=6′ respectively. But we do not treat the isomorphism of the
variables at the moment. Rather, we assume that each SCG G is encoded as a
logical formula and the linear record is constructed using the formula’s variables.
After building the annotation, all variables are deleted.

We note that there are many linearised graph representations for a SCG
G, in case that the string sortedSeq is not sorted. Their annotation enables to
reconstruct the respective SCG.

Lemma 1. Given a logical formula f(G) of a normalised SCG G and an
order Ω of its support symbols, there exists an unique linear record of G. Given
a linear record of a normalised SCGs H, a logical formula f(H) and a graphical
representation of H can be constructed.

P r o o f. Follows from the construction steps in Definition 13. Actually
each SCG has a set of equivalent logical formulas (due to the isomorphisms among
the variables). �

The annotations, which encode the topological structure of the SCGs,
represent sets of identical relations’ arguments. Describing all possible identities
of n arguments is connected to the task of partitioning a set with n elements
into nonempty, disjoint subsets. Each partition defines an equivalence relation
for its members. The number of partitions is given by the so-called Bell numbers

384 Galia Angelova, Stoyan Mihov

B1, B2, . . . [14]. In a previous paper we have considered the fifteen classes for
partitioning of a set with 4 elements {x1, y1,x2, y2}. Only six classes can be inter-
preted as encodings of the topological links in a SCG with two binary predicates
relation1(x1, y1) & relation2(x2, y2) [4]. Our experiments show that the struc-
tural variety in the SCGs is much more restricted than the corresponding Bell
numbers for the respective number of set elements (B20 and B24, see Section 6).

3.2. Off-line construction of a minimal FSA with markers at the

final states. We propose to enumerate explicitly all possible injective projection
queries with non-empty answers in a given closed world. Further we show how
to compress this conceptual resource as a minimal FSA with markers at the final
states. The following definition helps us to select and store only the subgraphs
which have conceptual interpretation according to the support.

Definition 14. Let G be a SCG with binary conceptual relations in a
KB defined according to some support S. A conceptual subgraph of G is a
connected graph Gcs such that:

• as ordinary graph, Gcs⊆G and
• Gcs is a SCG defined according to the support S.

Example 6. Figure 9A shows a conceptual subgraph of G2. Figure 9B
contains a ’meaningless’ subset of G2 nodes. Below by subgraphs of SCGs we
shall mean conceptual subgraphs.

Fig. 9A. A conceptual subgraph
of G2.

Fig. 9B. Connected nodes of G2, which
do not form a conceptual subgraph

We present an algorithm for construction of a minimal acyclic FSA with
markers at the final states, which encodes all KB subgraphs and their injective
generalisations. According to Proposition 1, every acyclic FSA can be defined
by the finite list of words belonging to the automaton language. Given a KB,
there is a finite number of KB subgraphs with a finite number of injective gener-
alisations. Therefore we focus on the construction of the finite regular language
which encodes all KB subgraphs and their injective generalisations. This lan-
guage represents all possible queries that have non-empty injective projections
onto the KB at the particular moment. We shall construct a finite list of words
in the alphabet of all support symbols. These words will be lexicographically

Conceptual Information Compression and Efficient Pattern Search 385

sorted according to certain linear order. After the construction of the list, we
shall apply methods of automata theory to build the minimal FSA.

We shall use the following types:
CHAR-types: sortedSeq, annotation, new lin labels;
LIST-types: list alternative annot – a list of strings consisting of

{′1′, ′2′, . . . ,′9′, ′0′, ′=′, ′,′};
Arrays of lists: list subgraphs, list gen graphs
Arrays: words markers(CHAR,〈CHAR,CHAR,CHAR,CHAR〉) and

sorted words markers(CHAR,

{〈CHAR,CHAR,CHAR,CHAR〉, . . . , 〈CHAR,CHAR,CHAR,CHAR〉});

Algorithm 1. Construction of a minimal acyclic FSA with markers at
the final states AKB = 〈Σ, Q, q0, F,∆, E, µ〉 which encodes all subgraphs’ injective
generalisations for a KB of normalised SCGs with binary conceptual relations
{G1, G2,. . . , Gn} over support S.

Step 1, defining the finite alphabet Σ: Let S = (TC , TR, I, τ) be the KB
support according to definition 1. Define the alphabet Σ = {x | x ∈ TC or
x ∈ TR} ∪ {x : i | x ∈ TC , i ∈ I and τ(i) = x}. Order the m symbols of Σ using
certain linear order Ω = 〈a1, a2, . . . , am〉. Then Σ is an ordered alphabet.

Step 2, indexing all c-nodes in the KB: Juxtapose distinct integer indices
to all KB c-nodes, to ensure their default treatment as distinct instances of the
generic concept types. Then the linear records of the KB graphs contain no
multiple triples built by the same support labels. Define an alphabet for the
support labels in the indexed SCGs:

ΣKB = {aij | ai ∈ Σ, 1 ≤ i ≤ m and j is an index assigned to a KB c-node
with label ai, 1 ≤ j ≤ pi or j = ′none ′ when no indices are assigned
to ai}.

Order the symbols of ΣKB according to the linear order

ΩKB = 〈a1s1, . . . , a1su, a2p1, . . . , a2pv, . . . , amq1, . . . , amqx〉 where s1, s2, . . . , su

are the indices assigned to a1; p1, . . . , pv are the indices assigned to
a2; q1, . . . , qx are the indices assigned to am and s1 < s2 < · · · < su,
p1 < p2 < · · · < pv, · · · and q1 < q2 < · · · < qx.

Then ΣKB is an ordered alphabet. Define a mapping λ : ΣKB → Σ where
λ(aij) = ai for each aij ∈ ΣKB, 1 ≤ i ≤ m and j is an index assigned in ΣKB to
the symbol ai ∈ Σ.

386 Galia Angelova, Stoyan Mihov

/∗ Step 3, computation of all KB (conceptual) subgraphs: ∗/

for i := 1 to n do begin

list subgraphs(i) := { Gsub−j
i | Gsub−j

i is conceptual subgraph of Gi };
end;

/∗ Step 4, computation and encoding of all injective generalisations in
the array sorted words markers: ∗/

var main index := 1;
for each i and Gsub−j

i in list subgraphs(i) do begin

〈sortedSeq(Gsub−j
i), annotation(Gsub−j

i)〉 :=

COMPUTE LINEAR RECORD (Gsub−j
i , ΣKB);

/∗ note that sortedSeq(Gsub−j
i) contains no triples with duplicating

labels of ΣKB ∗/

list gen graphs(i, j) :=

COMPUTE INJ GEN(sortedSeq(Gsub−j
i), annotation(Gsub−j

i), ΣKB, Σ, λ);

/* all injective generalisations Ggen
1

, Ggen
2

, . . . , Ggen
q of Gsub−j

i are
stored as triple labels in Σ in list gen graphs(i, j). The k-th triple
of Ggen

1
, Ggen

2
, . . . , Ggen

q is computed as a generalisation of the k-th

triple of sortedSeq(Gsub−j
i). The topological structure of Ggen

p is

given by annotation(Gsub−j
i) for 1 ≤ p ≤ q ∗/

for each i, j and Ggen
p in list gen graphs(i, j) do begin

〈sortedSeq(Ggen
p), annotation(Ggen

p), new lin labels(Gsub−j
i)〉 :=

ENSURE PROJ MAPPING(sortedSeq(Gsub−j
i), annotation(Gsub−j

i),
ΣKB, Ggen

p , Σ, λ);

list alternative annot :=
COMPUTE ISOMORPHISMS(〈sortedSeq(Ggen

p), annotation(Ggen
p)〉);

words markers(main index, 1) := sortedSeq(Ggen
p);

words markers(main index, 2) :=

〈annotation(Ggen
p), list alternative annot, new lin labels(Gsub−j

i), Gi〉;
main index := main index +1; end;

end;

sorted words markers := SORT-BY-FIRST-COLUMN(words markers);
/∗ union of the rows with repetitive words in column 1 of the array

sorted words markers ∗/
while sorted words markers(∗, 1) contains k > 1 repeating words in column 1,

starting at row p do begin

Conceptual Information Compression and Efficient Pattern Search 387

sorted words markers(p, 2) := {sorted words markers(p, 2),

sorted words markers(p + 1, 2), . . . , sorted words markers(p + k − 1, 2)};

for 1 ≤ s ≤ k− 1 do begin DELETE-ROW(sorted words markers(p + s, ∗)

end; end;

/∗ definition of a finite list of words over Σ ∗/

L = {w1, . . . , wz | wi ∈ sorted words markers(*,1), 1 ≤ i, j ≤ z and wi ≤ wj

according to Ω, for i ≤ j}.

/∗ Step 5, FSA construction: ∗/

Consider L as a finite language over Σ, given as a list of z words which are
lexicographically sorted according to Ω. For every word wi ∈ L there is a marker
associated to it, stored in sorted words markers(i, 2) for 1 ≤ i ≤ z. Apply the
algorithm of [2, 3] and build directly the minimal acyclic FSA with markers at the
final states AKB = 〈Σ, Q, q0, F,∆, E, µ〉, which recognises L = {w1, w2, . . . , wz}.
Then

F = {qwi|qwi is the end of the path beginning at q0 with label wi, for

wi ∈ L, 1 ≤ i ≤ z},

E = {Mi | Mi = sorted words markers(i, 2), 1 ≤ i ≤ z} and

µ : qwi → Mi where qwi ∈ F , sorted words markers(i,1) = wi and

sorted words markers(i, 2) = Mi for 1 ≤ i ≤ z.

The following functions are used in Algorithm 1:

function 〈sortedSeq(G), annotation(G)〉 = COMPUTE LINEAR RECORD(G, Σ)
where G is normalised SCG, represented as a logical formula and Σ is an or-
dered alphabet. The function builds the linear record of G as shown in definition
13 and returns pair of strings 〈sortedSeq(G), annotation(G)〉.

function list gen graphs(i, j)=

COMPUTE INJ GEN(sortedSeq(Gsub−j
i), annotation(Gsub−j

i),Σ1,Σ2, λ).

Given the linear record of a SCG Gsub−j
i in the ordered alphabet Σ1, this func-

tion returns the list of labels of all injective generalisations Ggen
1

, Ggen
2

, . . . , Ggen
q

of Gsub−j
i written in the ordered alphabet Σ2. The generalisations are calcu-

lated using the mapping λ : Σ1 → Σ2, which defines how the symbols of Σ1 are
generalised by symbols of Σ2. The generalisations in Σ2 are computed as linear
sequence of triple labels where the k-th triple of Ggen

1
, Ggen

2
, . . . , Ggen

q generalises

the k-th triple in sortedSeq(Gsub−j
i). The linear sequences of generalisations’ la-

bels might be unsorted in Σ2. The topological structure of Ggen
1

, Ggen
2

, . . . , Ggen
q is

encoded by annotation(Gsub−j
i) since the triples’ order in Gsub−j

i and its injective

388 Galia Angelova, Stoyan Mihov

generalisations is the same. Since Σ1 is an alphabet containing indices for all c-
nodes of Gsub−j

i , the string sortedSeq(Gsub−j
i) contains no duplicated triples. The

injective generalisations in Σ2 might contain duplicating triples but their order
remains the one encoded by annotation(Gsub−j

i) since the order of the generalised
instances is kept when this function computes the injective generalisations.

function 〈sortedSeq(Ggen), annotation(Ggen), new lin labels(G)〉 =

ENSURE PROJ MAPPING(sortedSeq(G), annotation(G), Σ1, Ggen, Σ2, λ).

The linear record of a SCG G − 〈sortedSeq(G), annotation(G)〉 – is given in the
ordered alphabet Σ1. The string of labels of the injective generalisation Ggen is
given in the ordered alphabet Σ2 and the k-th triple of Ggen generalises the k-th
triple in sortedSeq(G). The generalisation Ggen is calculated using the mapping
λ : Σ1 → Σ2, which defines how the symbols of Σ1 are generalised by symbols of
Σ2. This function

(1) Sorts Ggen in Σ2 and produces a linear record of Ggen: 〈sortedSeq(Ggen),
annotation(Ggen)〉,

(2) checks whether the order of c-nodes in sortedSeq(Ggen) corresponds
to the order of the respective specialised c-nodes in sortedSeq(G). If
yes, new lin labels(G)=sortedSeq(G). If not, the function rearranges
sortedSeq(G) in such a way that its i-th symbol is specialisation of the
i-th symbol of sortedSeq(Ggen) and stores the rearranged label sequence in
new lin labels(G). In both cases, the topological links of new lin labels(G)
are encoded by annotation(Ggen). Thus an injective projection π : Ggen →
G is encoded.

function list alternative annot =

COMPUTE ISOMORPHISMS(〈sortedSeq(G), annotation(G)〉).

Given the linear record of some SCG G, where sortedSeq(G) contains
multiple triples of identical support symbols, this function constructs a sorted
list of all alternative annotations which are due to the isomorphisms among the
variables, assigned in the logical formula to the generic concept instances. When
list alternative annot is empty, G has only one annotation which is already com-
puted in the linear record and stored in annotation(G).

Example 7. Algorithm 1 is illustrated using the sample KB in example
1. At step 1, an alphabet Σ is defined, which is ordered according to the symbols’
order in the Latin alphabet:

Conceptual Information Compression and Efficient Pattern Search 389

Σ = {ACT, AGNT, ANIMAL, ANIMATE, EAT, ENTITY, EVENT, EXPR,

LOVE, OBJ, PERSON, PERSON:John, PERSON:Sue, PHYS-OBJECT,

PIE, POSS, PTNT, STATE}

Ω : ACT < AGNT< ANIMAL < ANIMATE < EAT < ENTITY < EVENT <

EXPR < LOVE < OBJ < PERSON < PERSON : John < PERSON : Sue

< PHYS-OBJECT < PIE < POSS < PTNT < STATE

At step 2, unique indices 1-10 are assigned to the ten distinct c-nodes
in the KB (to ensure the representation of all KB subgraphs as unique linear
records):

A new alphabet ΣKB with indices is defined with a respective order ΩKB:

ΣKB = {ACT, AGNT, ANIMAL, ANIMATE, EAT2, EAT10, ENTITY,

EVENT, EXPR, LOVE6, LOVE7, OBJ, PERSON5, PERSON : John1,
PERSON : Sue4, PERSON : Sue9, PHYS-OBJECT, PIE3, PIE8, POSS,

PTNT, STATE } with order

ΩKB : ACT < AGNT < ANIMAL < ANIMATE < EAT2 < EAT10 <

ENTITY < EVENT < EXPR < LOVE6 < LOVE7 < OBJ < PERSON5

< PERSON : John1 < PERSON : Sue4 < PERSON : Sue9 <

PHYS-OBJECT < PIE3 < PIE8 < POSS < PTNT < STATE

In this way we shall maintain two alphabets: ΣKB with indices, to covers the
particular KB instances, and Σ with no indices where the future projection queries
will be expressed. When computing the generalisations, the mapping λ ensures
the treatment of each indexed c-node as a non-indexed one. For instance, λ:
LOVE6, LOVE7 → LOVE.

At step 3, all KB subgraphs are computed and stored in list subgraphs. The i-th
element of the array contains the list of all the subgraphs of the i-th KB graph
Gi. For brevity, we consider only four subgraphs of G2 with the following linear
records:

Gsub−1

2
: 〈′LOVE6 EXPR PERSON5 LOVE6 OBJ PERSON5

′, ′1=3, 2=4′〉,

390 Galia Angelova, Stoyan Mihov

Gsub−2
2

: 〈′LOVE6 EXPR PERSON5 LOVE7 EXPR PERSON5
′, ′2=4′〉,

Gsub−3
2

: 〈′LOVE6 OBJ PERSON5 LOVE7 EXPR PERSON5
′, ′2=4′〉,

Gsub−4
2

: 〈′LOVE6 EXPR PERSON5 LOVE6 OBJ PERSON5 LOVE7 EXPR
PERSON5

′, ′1=3, 2=4=6′〉

These four subgraphs belong to list subgraphs(2) together with another 58 sub-
graphs.

At step 4, all injective generalisations of all KB subgraphs are enumerated
as a sorted list of words built over the alphabet Σ. The subgraphs’ annotations
are turned to respective markers associated to these words. This data is kept in
sorted words markers. Table 1 shows few rows of this array. Column 1 contains
sorted generalisation labels in Σ; column 2 lists the subgraphs in ΣKB for which
the generalisations are computed. All KB subgraphs are stored together in the
corresponding rows of column 2 and thus the compatible subgraphs of G1 and
G2 are identified. The annotations are parts of the markers in column 2 together
with the index of the KB graph from where the subgraphs are taken.

sorted words markers(i,1):
sortedSeq(Ggen)

sorted words markers(i,2):
〈annotation(Ggen), list alternative annot,

new lin labels(Gsub−j
2

), G2〉
.
LOVE EXPR ANIMAL LOVE

OBJ ANIMAL
〈′1=3, 2=4′, [], ′LOVE6 EXPR PERSON5

LOVE6 OBJ PERSON′

5, G2〉
〈′2=4′, [], ′LOVE7 EXPR PERSON5 LOVE6

OBJ PERSON′

5
, G2〉

.
LOVE EXPR ANIMATE LOVE
EXPR ANIMATE LOVE OBJ

ANIMATE

〈′1=5, 2=4=6′,[′3=5, 2=4=6′], ′LOVE6 EXPR
PERSON5 LOVE7 EXPR PERSON5 LOVE6

OBJ PERSON′

5
, G2〉

LOVE EXPR ANIMATE LOVE
OBJ ANIMATE STATE OBJ

ANIMATE

〈′1=3, 2=4=6′, [], ′LOVE6 EXPR PERSON5

LOVE6 OBJ PERSON5 LOVE7 EXPR
PERSON′

5
, G2〉

.

Table 1. Sample rows of the array sorted words markers at the end of step 4

Let us consider the generalisation in column 1

LOVE EXPR ANIMATE LOVE EXPR ANIMATE LOVE OBJ ANIMATE (g1)

computed for Gsub−4
2

. The linear record of Gsub−4
2

is constructed by
COMPUTE LINEAR RECORD in ΣKB and contains no multiple triples with iden-

Conceptual Information Compression and Efficient Pattern Search 391

tical labels. It is sorted according to ΩKB and thus the two triples, start-
ing with LOVE6, appear as 1st and 2nd triple in sortedSeq(Gsub−4

2
). Then

annotation(Gsub−4
2

)=′1=3, 2=4=6′. However, (g1) is computed in Σ; the func-
tion COMPUTE INJ GEN produces for (g1) the following string which is not sorted
in Σ:

LOVE EXPR ANIMATE LOVE OBJ ANIMATE LOVE EXPR ANIMATE with annotation
1=3, 2=4=6

The function ENSURE PROJ MAPPING rearranges (g1) as a sorted sequence of
labels sortedSeq(g1) where the triples are ordered in a different manner with
annotation(g1)=′1=5, 2=4=6′. This function also reorders the triples of the
subgraph Gsub−4

2
to correspond to the nodes’ order in sortedSeq(g1):

new lin labels(Gsub−4

2
) =

′LOVE6 EXPR PERSON5 LOVE7 EXPR PERSON5 LOVE6 OBJ PERSON5
′

The string new lin labels(Gsub−4
2

) is stored in column 2. In this way for
each generalisation G in column 1, its nodes’ order corresponds to the order of the
specialised nodes in the respective subgraphs in column 2. Moreover, the encoding
of the c-nodes equivalence annotation(G) is also valid for the subgraph with labels
new lin labels in column 2. Therefore, a (potential) injective projection mapping
of a query G (from column 1) to a subgraph (in column 2) is calculated and
memorised. In addition (g1) contains multiple triples with identical labels. The
function COMPUTE ISOMORPHISMS is run at step 4 to deal with this issue. It
delivers a list of strings list alternative annot which is also stored in column 2 of
Table 1. The annotations of the equivalent isomorphic formulas are memorised
off-line to avoid their computation in run time. They are essential because the
projection query might be posed to the system as an alternative logical formula
which is isomorphic to the one used at the off-line phase.

Some generalisations in column 1 of Table 1 can be projected to more
than one KB subgraph listed in column 2. Complex markers are constructed
in column 2 at step 4 (as union of single markers) when the repeating strings
in column 1 are deleted from the array sorted words markers. The subgraphs
at Figures 7B and 7C are also listed in column 2 as a complex marker with
their respective annotations. Thus the conceptual resource is prepared off-line
for run-time querying, when a particular projection query will be posed to the
system.

Table 2 contains 27 different injective generalisations for the subgraphs
Gsub−1

2
, . . . , Gsub−4

2
, calculated according to the sample support. Their annota-

tions are grouped into 9 markers:

392 Galia Angelova, Stoyan Mihov

ACT OBJ ANIMAL LOVE EXPR ANIMAL M3

ACT OBJ ANIMAL STATE EXPR ANIMAL M3

ACT OBJ ANIMATE LOVE EXPR ANIMATE M3

ACT OBJ ANIMATE STATE EXPR ANIMATE M3

ACT OBJ PERSON LOVE EXPR PERSON M3

ACT OBJ PERSON STATE EXPR PERSON M3

LOVE EXPR ANIMAL LOVE EXPR ANIMAL M2

LOVE EXPR ANIMAL LOVE EXPR ANIMAL LOVE OBJ ANIMAL M4

LOVE EXPR ANIMAL LOVE OBJ ANIMAL M5

LOVE EXPR ANIMAL LOVE OBJ ANIMAL STATE EXPR ANIMAL M4a

LOVE EXPR ANIMAL STATE EXPR ANIMAL M6

LOVE EXPR ANIMATE LOVE EXPR ANIMATE M2

LOVE EXPR ANIMATE LOVE EXPR ANIMATE LOVE OBJ ANIMATE M4

LOVE EXPR ANIMATE LOVE OBJ ANIMATE M5

LOVE EXPR ANIMATE LOVE OBJ ANIMATE STATE EXPR ANIMATE M4a

LOVE EXPR ANIMATE STATE EXPR ANIMATE M6

LOVE EXPR PERSON LOVE EXPR PERSON M2

LOVE EXPR PERSON LOVE EXPR PERSON LOVE OBJ PERSON M4

LOVE EXPR PERSON LOVE OBJ PERSON M5

LOVE EXPR PERSON LOVE OBJ PERSON STATE EXPR PERSON M4a

LOVE EXPR PERSON STATE EXPR PERSON M6

LOVE OBJ ANIMAL STATE EXPR ANIMAL M3

LOVE OBJ ANIMATE STATE EXPR ANIMATE M3

LOVE OBJ PERSON STATE EXPR PERSON M3

STATE EXPR ANIMAL STATE EXPR ANIMAL M6

STATE EXPR ANIMATE STATE EXPR ANIMATE M6

STATE EXPR PERSON STATE EXPR PERSON M6

Table 2. A sorted list of all injective generalisations of the subgraphs
Gsub−1

2
, . . . , Gsub−4

2

Conceptual Information Compression and Efficient Pattern Search 393

M1: 〈′1=3, 2=4′, [], ′LOVE6 EXPR PERSON5 LOVE6 OBJ PERSON5
′, G2〉

M2: 〈′2=4′, [], ′LOVE6 EXPR PERSON5 LOVE7 EXPR PERSON5
′, G2〉

M2a: 〈′2=4′, [], ′LOVE7 EXPR PERSON5 LOVE6 EXPR PERSON5
′, G2〉

M3: 〈′2=4′, [], ′LOVE6 OBJ PERSON5 LOVE7 EXPR PERSON5
′, G2〉

M3a: 〈′2=4′, [], ′LOVE7 EXPR PERSON5 LOVE6 OBJ PERSON5
′, G2〉

M4: 〈′1=5, 2=4=6′, [′3=5, 2=4=6′], ′LOVE6 EXPR PERSON5 LOVE7 EXPR
PERSON5 LOVE6 OBJ PERSON5

′, G2〉
M4a: 〈′1=3, 2=4=6′, [], ′LOVE6 EXPR PERSON5 LOVE6 OBJ PERSON5

LOVE7 EXPR PERSON5
′, G2〉

M5 : M1 ∪ M3a
M6 : M2 ∪ M2a

The markers M2a, M3a and M4a are created when ENSURE PROJ MAPPING re-
arranges the subgraph’ labels. The markers M5 − M6 appear when the sorting
of sorted words markers, column 1 groups the repetitive rows together; the re-
peating values in column 1 are deleted and the markers in column 2 are kept as
union of the single markers. The sorted list of generalisations (words over Σ) in
column 1, Table 2 is input for the FSA construction.

Fig. 10. Minimal acyclic FSA, encoding all non-empty injective projections onto
Gsub−1

2
− Gsub−4

2

At step 5, the minimal AKB is constructed directly [2, 3]. Fig. 10 shows
the FSA with markers at the final states which accepts words corresponding to

394 Galia Angelova, Stoyan Mihov

the 27 injective generalisations. The FSA states are presented as circles, the final
states as double circles and the transitions – as labeled arcs. An arrow marks the
initial state. The FSA has 63 states and 81 transition arcs.

3.3. Discussions Regarding the General Case of Projection. All
SCGs with non-empty injective projections to a given KB contain less than k
elementary conjuncts, where k is the number of the conceptual relations in the
largest KB graph. So given a particular KB status, we can enumerate off-line all
these queries and compress them in a minimal FSA. However, such a calculation
is impossible for the general projection case, when there is no need for πG to
be isomorphic to G. The projection queries might have arbitrary number of
elementary conjuncts, so we cannot enumerate in advance all projection queries
that have non-empty projections to the KB. If the query length is restricted
to some reasonable length, the considerations in section 3.2 can be extended
to cover explicit enumeration of all projection mappings. The markers should
become more complex, to store all possible mappings in order to memorise in
advance all possible projections.

We have to note, however, that the application significance of the non-
injective projections is somewhat under question. Since AI operates on types
and instances, it remains unclear whether mixing instances in the specialisation
process is a good idea. This is done by π2 in example 3 where the query ’is
there an ANIMAL who feels two (different) states’ receives the answer ’there is
a PERSON who feels (one type of) love’. The reasonableness of this answer is
disputable. So we believe that the most important, practical pattern search is
based on injective projections.

4. Injective Projection as a Run-Time Look-up in the

Minimal FSA. Given a run-time query G, its injective projection to the KB is
calculated by a look-up in the minimal acyclic FSA which encodes all KB injec-
tive generalisations. Here we shall assume that G is posed to the FSA-archive as
a logical formula and that G holds in the same world where the KB is acquired,
i.e. we shall use the support S and the ordered alphabet Σ.

Algorithm 2. Finding all injective projections of a SCG with binary con-
ceptual relations G onto a KB of SCGs with binary conceptual relations, which is
encoded by algorithm 1 as a minimal acyclic FSA AKB = 〈Σ, Q, q0, F,∆, E, µ〉 :

Step 1. Consider the monadic and binary predicates in the logical formula of G.
If they contain labels which are not present in the KB support, G has empty

Conceptual Information Compression and Efficient Pattern Search 395

projection onto the KB.

Step 2. 〈sortedSeq(G), annotation(G)〉 := COMPUTE LINEAR RECORD(G,Σ).
Build the word wG=sortedSeq(G) and look up in AKB using wG (i.e. follow the
unique AKB path pG starting at q0 with label wG). If pG does not lead to a final
state in AKB , then G has empty injective projection onto the KB. Otherwise take
the state qG of AKB, qG ∈ F with marker Mq such that the path pG ends at qG.

Step 3. Consider Mq at qG. Mq is a set of k single 4-tuple markers, where k ≥ 1:

{〈annotation1 , list alternative annot 1, new lin labels1, Gi1〉, ,

〈annotationk , list alternative annotk, new lin labelsk, Gik〉 }

for 1 ≤ j ≤ k do begin

if annotation(G) = annotation j then return 〈new lin labels j ,

annotation(G)〉 as an injective projection of G onto Gij ;

if annotation(G) ∈ list alternative annot j

then annotation(G) := annotation j ;

return 〈new lin labels j , annotation(G)〉 as an injective projection of

G onto Gij ;

end

G has empty projection onto the KB.

Theorem 1. All injective projections of G, a normalised SCG with bi-
nary conceptual relations, onto a KB of normalised SCGs with binary conceptual
relations can be calculated by algorithm 2 as look-ups in the FSA AKB built by
algorithm 1.

P r o o f. Algorithm 1 constructs off-line a minimal acyclic FSA with mark-
ers at the final states AKB, which encodes all injective generalisations of the KB
subgraphs. They are in fact all SCGs that have injective specialisations in the
KB at the particular moment and therefore, non-empty injective projections onto
the KB. Algorithm 2 interprets the query G as a sequence of symbols wG. If G
has a non-empty projection onto the KB, then wG ∈ L(AKB) which is ensured
by the construction of AKB by algorithm 1. The look-up of a AKB path, starting
at q0 and labeled by wG, identifies the markers at the final state qG of AKB,
where the actual projection mappings are pre-listed. Algorithm 2 identifies the
string annotation(G) in case that it is stored in the marker of qG. Since all iso-
morphisms are pre-computed by algorithm 1, all possible injective mappings of G
onto the KB are stored in the marker. In this way the off-line enumeration of lin-
ear sequences of graph labels, together with the associated annotations, ensures

396 Galia Angelova, Stoyan Mihov

run-time identification of all injective projection mappings of a query G onto a
given KB at some particular moment. �

5. Algorithmic complexity. The complexity of the main tasks to be
performed off-line and on-line can be estimated separately, as they are separately
performed.

The off-line tasks have exponential complexity. Let us split them into
five main components:

• Finding all connected subgraphs of the KB SCGs and recording
them as linear records 〈sortedSeq,annotation〉. Given a SCG with n c-
nodes, the search of its subgraphs has complexity O(2n). Sorting a list of symbols
is a O(k log k) algorithm, where k is the number of the list items. Assigning the
annotation can be done in linear time, with respect to the number of the subgraph
c-nodes. The general complexity of this component is O(n × 2n).

• Computing all injective generalisations of the KB subgraphs,
recording them as linear records, and resorting some of the KB sub-
graphs to ensure the correspondence of their nodes order to the order
of the nodes in the respective linear record of injective generalisations.
The calculation of all injective generalisations depends on the maximal depth d of
the subsumption relation, which is defined in the type hierarchies, on the number
of subgraphs m and their maximal length s. Its complexity is O(m× ds). As we
said above, sorting is a task with complexity O(k log k) depending on the length
k of the symbol strings to be sorted. Calculating the annotation of a SCG can be
done in linear time. The general complexity of this task is O(m×ds×(s+log m)).

• Building all alternative annotations for all the generalisa-
tions (by computing the isomorphisms among the duplicating triples
of the logical formulas). Let sortedSeq(G) of the linear record of a general-
isation G contains m groups of duplicating triples with lengths correspondingly
k1, k2, . . . , km elementary conjuncts. The isomorphisms correspond to the permu-
tations of the duplicating triples within the positions occupied by these triples in
sortedSeq(G). Their calculation has complexity O(k1! × k2! × · · · × km!).

• Building the FSA with markers at the final states AKB. As
shown in [3], the complexity of a minimal automaton construction is O(n log(m)),
where n is the total number of symbols in the input list of words and m is the
number of AKB states.

The FSA AKB can be supported as an alternative KB representation.
Adding a new SCG to the KB (i.e. to its FSA) is relatively easy but changes

Conceptual Information Compression and Efficient Pattern Search 397

and updates in general require recalculation of the whole FSA. So we consider
the complexity of the FSA updates as another off-line task:

• Providing KB updates by assertion and deletion of words in
the FSA AKB. A single word can be inserted or deleted in linear time, depend-
ing on the word length n. However, for a whole SCG, the insertion or deletion
of all words-generalisation of subgraphs, can be done for O(m1 × ds1) where m1

is the number of generalisations, s1 is the maximal subgraph length and d is the
depth of the subsumption relation.

Run-time tasks: There are two main on-line tasks, given a query G as
a logical form:

• Presenting G as a sorted sequence of support symbols, with
complexity O(n log n), where n is the number of G symbols, and calculation
of its annotation for linear time O(n);

• Look-up in the FSA AKB by a word wG. Its complexity is clearly
O(n), where n is the number of G symbols. No matter how large the KB is, all
injective projections of G to the KB are found at once with complexity depending
on the input length only.

Comparing these figures to the run-time complexity results, we see the
benefits of explicit off-line enumerations. It is also trivial to check whether two
SCGs are equivalent.

6. Experimental assessment. To study the proposed scenario and
its practical settings, we have generated automatically two test dataset of sup-
ports and SCGs with binary conceptual relations in normal form. In fact we have
implemented a workbench for random generation of testing data, given some ba-
sic parameters like number of concept and relation types, depth and width of
the support hierarchies, number of graphs in the knowledge base, graph length
in elementary conjuncts and so on. The parameters of the two experiments are
summarised in Table 3. The input text files for FSA construction consist of lines
corresponding to all injective generalisations in the experiment. Each line has
the format:

〈sortedSeq(Gi) of the linear records of a generalisation Gi, Marker〉

where 1 ≤ i ≤ 10436190 for test 1 and 1 ≤ i ≤ 140031027 for test 2. The
minimal FSAs, which compress all injective generalisations of the test KBs, are
built off-line using results of [2, 3].

398 Galia Angelova, Stoyan Mihov

Number of: Test 1 Test 2

1. Concept types in the support 600 1025

2. Conceptual relation types in the support 40 10

3. Maximal hierarchy depth 18 24

4. Hierarchy supertypes (average per type) 2,32 2,0009

5. SCGs in the knowledge base 291 329

6. Elementary conjuncts (SCGs length) 3-10 3-12

7. (Conceptual) subgraphs in the KB 6 753 11 146

8. Injective generalisations of all subgraphs 10 436 190 140 031 027

9. Annotation (structural identity) types 13 885 3 618

10. States in the final minimal FSA 2 751 977 23 956 007

11. Transitions in the final minimal FSA 3 972 096 43 347 641

12. Size of the input text file in UNICODE – sorted
list of linear records for all generalisations

891,4 MBytes ∼ 13GBytes

13. Size of the minimal FSA without the markers at
the final states (only pointers to them are kept)

52,44 MBytes 612,73 MBytes

14. Compression rate input file / minimal FSA ∼ 17times ∼ 21, 2times

15. Size of the input file (zipped by bzip2) 21,8 MBytes

16. Ratio zip/FSA 2,4 times

Table 3. Two tests of Algorithm 1 with randomly-generated supports and knowledge
bases

Test 2 was constructed on a bigger and deeper concept hierarchy (Table
3, lines 1 and 3) and with longer SCGs, which contained up to 12 elementary
conjuncts (line 6). Therefore there are more subgraphs in test 2 (line 7) and
the number of all injective generalisations in test 2 is much higher than in test 1
(line 8). However, the generalisations in test 2 have much more regular topological
structure (line 9). This is due to the fact that the SCGs in test 2 are variations of
some 4-5 predefined structural patterns. About 30% of the SCGs are connected
like stars with one common concept for all elementary conjuncts. In this way
all subgraphs are also star-like and the annotations vary less when the labels are
sorted. So for test 2, the compression rate of the input file is higher (line 14). In
both tests the compression rate is essential and resembles the compression rate
for morphological dictionaries, represented as minimal acyclic FSA [2]. For test
1, we have also compared the zipped input file to the FSA size; the FSA is only
2,4 times bigger but ensures run-time look-ups in linear time (line 16).

Since the maximal number of elementary conjuncts in the two experiments

Conceptual Information Compression and Efficient Pattern Search 399

is 10 and 12 respectively, we can compare the corresponding Bell numbers of
equivalence classes to the numbers of topological structures in the experimental
datasets. We are interested in B20 (which corresponds to the equivalence classes of
20 arguments in 10 elementary conjuncts) and B24 (24 arguments in 12 elementary
conjuncts). Line 9 of Table 3 shows quite limited variety of the topological
structures in the experimental data sets while

B20= 51 724 158 235 372 and B24=445 958 869 294 805 000.

7. Conclusion. This paper introduces the idea of storing conceptual in-
formation as a regular language. The approach implements off-line as much NP-
hard computations as possible and provides exclusive run-time efficiency. The
proposal is based on a brute-force enumeration and sorting of all possible in-
jective generalisations which might look unusual from the classical knowledge
representation perspective. All SCGs treated by algorithms 1 and 2 have to be
normalised and turned to structures with minimal numbers of support symbols,
as the FSAs interpret each symbol occurrence as a different one. Some graph
mappings are lost in this way, compared to other SCGs representation formats,
but we are focused on a pragmatic, practical procedure for fast run-time calcu-
lations and our SCG model is insignificantly simplified. The suggested idea is
helpful in one more respect: it reveals the similarity among graphs and formulas
which consist of the same predicates and arguments but with different links (e.g.
the SCGs at Fig. 7A, 7B and 7C). Most AI algorithms would not consider them
as similar but in some sense they are very close since they deal with the same
notions.

There are two novel proposals in our approach: (i) to enumerate explicitly
all generalisations over a unified ordered alphabet, assigning them ’structural’
annotations and (ii) to encode the whole KB as a single minimal, acyclic au-
tomaton, which makes the run-time search dependent on the query length only,
no matter how big the KB is. The FSA-based encoding is built on insights and
intuitions stemming from both the logical interpretation of SCGs with binary
conceptual relations and from their graphical representation. The implementa-
tion requires considerable off-line preprocessing and large space. The experiments
support our claims regarding the feasibility and the scalability of the approach,
since the resulting conceptual resources are turned to compact data structures
that are kept in the RAM. The high compression rate is due to the fact that
the KB subgraphs and their injective generalisations are relatively uniform struc-
tures. Obviously the star graphs in the support impose strong constraints on

400 Galia Angelova, Stoyan Mihov

the structural patterns while computing injective generalisations; now we see ex-
perimental evidences about the ‘uniformity’. So the suggested encoding provides
ultra-efficient run-time calculation and radically reduces the time for the on-line
processing. This approach is reasonable because every search of conceptual pat-
terns is run over a (relatively) static KB, which is not updated at that particular
moment. Therefore the KB can be preliminary encoded in a way which provides
efficient run-time computations and can be continuously supported off-line in this
internal format.

As there is a variety of ways to implement the proposed internal oper-
ations, the main ideas are only sketched here. The considerations reveal the
important notion of ’conceptual subgraph’; we see that the run-time algorithms
for projection computation include calculations and checks of subgraphs that are
not conceptual graphs. But these unnecessary computations are inevitable dur-
ing the run-time projection calculation, as it operates on row data in contrast to
our approach, which relies on very precise data preparation to be done off-line.

The philosophy of off-line data preparation is already adopted by many
advanced applications. For instance, Google searches constantly the Web and
prepares its inverted indices off-line. Everyone uses Google because of its speed,
no matter how much space is needed to provide it. The knowledge-based applica-
tions will soon have fast access to almost unrestricted memory space, so run-time
complexity is the main challenge to face. Therefore, special algorithms should be
designed to improve the run-time efficiency. We believe that the efficient internal
encodings of conceptual structures are a must as they will enable fast services of
the modern semantic systems and their further application success.

REFERE NCES

[1] Roche E., Y. Schabes (Eds) Finite State Language Processing. MIT Press,
Cambridge, Massachusetts, 1997.

[2] Mihov St. Minimal Acyclic Automata: Constructions, Algorithms, Appli-
cations. PhD thesis, Sofia, 2000.

[3] Daciuk J., St. Mihov, B. Watson, R. Watson. Incremental Construc-
tion of Minimal Acyclic Finite State Automata. J. of Computational Lin-
guistics, 26, No 1 (2000), 3–16.

[4] Angelova G., S. Mihov. Finite State Automata and Simple Conceptual
Graphs with Binary Conceptual Relations. In: Supplementary Proceedings of

Conceptual Information Compression and Efficient Pattern Search 401

the 16th Int. Conf. on Conceptual Structures (ICCS’08), (Eds P. Eklund, O.
Haemmerlé), CEUR Workshop Proceedings 2008, ISSN 1613-0073, 139–148.

[5] Angelova G. Efficient Computation with Conceptual Graphs. Book chap-
ter in: (Eds P. Hitzler, H. Scharfe), Conceptual Structures in Practice, Chap-
man & Hall/Crc Studies in Informatics Series, Vol. 2, March 2009.

[6] Sowa J. Conceptual Structures – Information Processing in Mind and Ma-
chine. Reading, MA Addison Wesley, 1984.

[7] Chein M., M.-L. Mugnier. Conceptual Graphs: fundamental notions. Re-
vue d’Intelligence Artificielle, 6, No 4 (1992), 365–406.

[8] Baget J.-F., M.-L. Mugnier. Extensions of Simple Conceptual Graphs:
the Complexity of Rules and Constraints. Journal of AI Research, 16 (2002),
425–465.

[9] Mugnier M.-L., M. Chein. Polynomial Algorithms for Projection and
Matching, In: Conceptual Structures: Theory and Implementation (Eds H.
Pfeiffer, T. Nagle), Springer, Lecture Notes in Artificial Intelligence, Vol.
754, 1992, 239–251.

[10] Mugnier M.-L.On Generalization/Specialization for Conceptual Graphs.
Jour. of Experimental and Theoretical Computer Science, 7, (1995),
325–344.

[11] Croitoru M., E. Compatangelo. A combinatorial approach to con-
ceptual graph projection checking. In: Proceedings of the 24th Interna-
tional Conference of the British Computer Society, Special Group on AI
(SGAI’2004), 130–143.

[12] Hopcroft J., R. Motwani, J. Ullman. Introduction to Automata The-
ory, Languages, and Computation. Addison-Wesley, Reading, MA, 1983.

[13] Hopcroft J. An n log n algorithm for minimizing states in a finite au-
tomaton. In: The Theory of Machines and Computation, (Ed. Z. Kohavi),
Academic Press, 1971, 189–196.

[14] Weisstein. E. Bell number. From MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/BellNumber.html, 13 January 2009.

402 Galia Angelova, Stoyan Mihov

Galia Angelova

Institute for Parallel Processing

Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 25A

1113 Sofia, Bulgaria

e-mail: galia@lml.bas.bg

Stoyan Mihov

Institute for Parallel Processing

Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 25A

1113 Sofia, Bulgaria

e-mail: stoyan@lml.bas.bg

Received December 2, 2008

Final Accepted January 8, 2009

