
Serdica J. Computing 2 (2008), 349–368

CONSTRUCTING A CANONICAL FORM OF A MATRIX IN

SEVERAL PROBLEMS ABOUT COMBINATORIAL

DESIGNS*

Zlatka Teneva Mateva

Abstract. The author developed computer programs needed for the classi-
fication of designs with certain automorphisms by the local approach method.
All these programs use canonicity test or/and construction of canonical form
of an integer matrix. Their efficiency substantially influences the speed of
the whole computation. The present paper deals with the implemented
canonicity algorithm. It is based on ideas used by McKay, Meringer, Kaski
and Bouyukliev, but while their algorithms are for the equivalence test, the
canonicity test or finding canonical representative of only one type of com-
binatorial object (graph, code, design, binary matrix, etc.), the algorithm
presented in this paper is meant to work fast on all types of integer matrices
used for the classification of designs with predefined automorphisms. This
is achieved through the suitable spectrum invariant, and the way it is used
to cut off some branches of the search tree.

ACM Computing Classification System (1998): F.2.1, G.2.2.
Key words: Algorithm, automorphism, incidence matrix, orbit matrix, group action, cano-

nical form, BIBD.
*Partially supported by the Bulgarian Science Fund contract with TU Varna, No 487.

350 Zlatka Teneva Mateva

1. Introduction.

1.1. Construction and study of incidence structures. Incidence
structures and the integer matrices associated with them are the subject of a
dynamically developed field of modern Combinatorics. Usually an equivalence
relation is defined over the set of such combinatorial objects and the correspond-
ing equivalence classes are considered. The main problems are:

I Existence problem – find one such object, or prove its nonexistence.

I Exhaustive search – find at least one element of each equivalence
class.

I Filtering away equivalent objects – leave exactly one element of
each equivalence class. Sometimes only one element has some additional proper-
ties and is called the canonical representative of this class.

I Determining the automorphism group – the group of all equiva-
lence transformations of the object.

In most cases the solution of open problems is only possible with the
help of computers and this makes the problem of finding effective and correct
algorithms very important.

1.2. About the different problems that are the subject of this
paper. All the problems discussed here can be solved using one and the same
main algorithm for finding the canonical form of a matrix under a definite group
of equivalence transformations.

The problem which this main algorithm solves is a generalization of the
problem of finding the canonical form of an (m × n) matrix of a certain type
under the action of the permutation group Sm × Sn considered, for instance, in
[24], [11], [15], [13], [14], [4], and is close to the canonicity test in [26], [6], [7],
[25].

The main difficulty in solving such problems arises from the great number
of permutations which have to be considered. This is why the authors of the most
popular software products as DISKRETA [8], MOLGEN [9], QEXTENTION [3],
MAGMA [2], and the subsystems DESIGN [28] and GRAPH [27] in GAP apply
many of techniques to reduce this number. The main algorithm presented here
implies ideas used by Brendan McKay [22] in the isomorphism test of graphs, by
Marcus Meringer [15] in the canonicity test of molecular graphs, by Petery Kaski
[12] in the canonicity test and canonical representative construction for designs
and design resolutions and by Iliya Bouyukliev [4] in the isomorphism test of
codes and designs, as well as in the equivalence test for Hadamard matrices.

Constructing a canonical form of a matrix . . . 351

1.3. Computer programs for the classification of designs with
certain automorphisms. Since the construction and study of combinatorial
designs is presently done by the help of computers, it is very important that
at least part of the results should be obtained in several ways by different soft-
ware, and ideally by different algorithms. For that purpose the author developed
computer programs needed for the classification of designs with certain automor-
phisms by the local approach method, i.e, these are programs for construction
of orbit matrices and their extension to combinatorial designs, as well as for the
determination of the automorphism group and other design properties. They
were used in parallel with Topalova’s programs (described in [29]) for obtaining
and partially verifying the results in [16], [18], [19], [17], and [20].

In the author’s approach the canonicity test or the construction of canon-
ical form of an integer matrix is a very important part of all these programs and
substantially influences the speed of the whole computation. The specifics of its
implementation for all these design construction problems are the subject of the
present paper.

2. Necessary definitions and theorems.

Sets, partitions, groups
2.1. Sets. Let Np = {0, 1, 2, . . . , p} and N

+
p = {1, 2, . . . , p}. Let Mm,n(Np)

be the set of all (m×n) matrices with elements of Np. Let us define a lexicographic
order in Mm,n(Np).

Let A = (ai,j) be an arbitrary matrix of the set Mm,n(Np). Denote by a′i
and a′′j , i ∈ N

+
m, j ∈ N

+
n respectively the i-th row and j-th column of the matrix

A, and by A(i1, . . . , is) ∈ Ms,n(Np) the part of A formed by the rows a′i1 , . . . , a
′
is

in this order. Note that the row (column) vectors of rows (columns) a′n1
and

a′n2
(a′′n1

and a′′n2
) might be the same, yet we consider the two rows (columns)

different, i.e, we always associate with them the row (column) numbers n1 and n2.
On the other hand, we define on the set of rows (columns) a partial order relation
’<’ such that a′n1

< a′n2
(a′′n1

< a′′n2
) iff the row (column) vector of row (column)

a′n1
(a′′n1

) is lexicographically smaller than that of a′n2
(a′′n2

). For simplicity we
will often refer to the row (column) number instead of the row (column) itself,
i.e, we will talk of row (column) n instead if a′n (a′′n).

2.2. Partitions. In combinatorial mathematics, an ordered partition π

of a set Ω is a sequence {Ω1, . . . ,Ωs} of disjoint nonempty subsets of Ω whose
union is ∪s

i=1Ωi = Ω. This differs from partition of a set in that the order of the
Ωi matters. An ordered partition π is regular, if for any two different cells Ωi and
Ωj, i < j iff min{Ωi} < min{Ωj}.

352 Zlatka Teneva Mateva

When the elements of Ω have been assigned the numbers from 1 to |Ω|,
each partition π of Ω can be considered as a partition of the set N

+

|Ω| and respec-

tively each partition of the set N
+

|Ω| defines a partition of the set Ω. The elements
of the partition are called cells.

Consider a partition of the set of rows (columns) of a matrix. A cell of
which all elements have one and the same row (column) vector is called simple,
and a partition of which all cells are simpl, is called discrete.

A one-to one correspondence can be defined between each partition π =
{Ω1, . . . ,Ωs} and a surjective function π̃ : Ω −→ π, defining a correspondence of
each element ωi ∈ Ω to the cell Ωj ∈ π containing it.

A permutation ϕ ∈ S|Ω| of the elements of Ω does not change the partition
π = {Ω1, . . . ,Ωs}, if for each element ω ∈ Ω the element ϕω is from the cell Ωi

iff ω ∈ Ωi. All permutations of the integers from 1 to m which do not change the
partition π of the set N

+
m form a group denoted by Sm(π).

If π and η are two partitions of the set Ω, we say that η is finer than π

or that π is coarser than η, and we write η 4 π, if each element of η is a subset
of an element of π.

2.3. Permutation groups acting on Mm,n(Np). The subgroup G′ of
the symmetric group of order m (G′ ≤ Sm) acts on the rows of the matrices of the
set Mm,n(Np), if a correspondence is defined between each ordered pair (ρ,A),
where ρ = (ρ1, . . . , ρm) ∈ G′, A = (a′1, . . . , a

′
m)T ∈ Mm,n(Np) and the matrix

ρA = (a′ρ1
, . . . , a′ρm

)T . The group G′′ ≤ Sn acts on the columns of the matrices of
the set Mm,n(Np), if ∀σ = (σ1, . . . , σn) ∈ G′′ and ∀A = (a′′1 , . . . , a

′′
n) ∈ Mm,n(Np)

it holds σA = (a′′σ1
, . . . , a′′σn

). The group G′×G′′ acts on the rows and columns of
the matrices of the set Mm,n(Np) juxtaposing to each matrix A ∈ Mm,n(Np) and to
each pair of permutations (ρ, σ) ∈ G′ ×G′′ the matrix (ρ, σ)A = ρ(σA) = σ(ρA),
i.e, the matrix obtained from A by applying the permutation ρ on the rows, and
σ on the columns.

The elements of G′ are called row permutations, of G′′ – column permu-
tations, and of G′ ×G′′ – matrix permutations.

Let the groups G′ and G′′ act respectively on the rows, and columns of
Mm,n(Np). The two matrices A and B of the set Mm,n(Np) are equivalent under

the group G = G′ ×G′′ (A
G
∼ B) if a matrix permutation (ρ, σ) ∈ G exists, such

that

(1) A = (ρ, σ)B,

i.e, when the matrices A and B are of one and the same orbit of Mm,n(Np) under
the action of G.

Constructing a canonical form of a matrix . . . 353

Matrix permutations for which (1) holds are isomorphic ones, transform-
ing the matrix B into A. An isomorphism transforming A into itself is an au-
tomorphism of A, and the set of all automorphisms of A under G form a group
which is called Aut(A,G).

If a matrix permutation (ρ, σ) is an automorphism, then if you know ρ, it
is trivial to determine σ up to a permutation of columns with equal column vectors
in each cell. That is why below we often find automorphism row permutations,
and do not explain anything about the related column permutations.

3. Construction of the canonical form of a matrix under a

certain group of permutations.

The problem
3.1. Let the regular partitions π′ and π′′ of the sets N

+
m and N

+
n , define

partitions respectively of the sets of the rows, and of the columns of an arbitrary
matrix A of Mm,n(Np).

The problem is, for given partitions π ′ and π′′ for an arbitrary matrix A ∈
Mm,n(Np), to find the matrix

(2) c(A) = max{τA |τ ∈ G},

where G is the group of all matrix permutations which do not change both
partitions.

The matrix c(A) is lexicographically the maximal matrix of the orbit of
A under the action of the group G = Sm(π′) × Sn(π′′) over the set Mm,n(Np).

3.2. Proposition. The correspondence c : Mm,n(Np) −→ Mm,n(Np),
defined by the equality (2) is canonical.

P r o o f. The mapping c is well defined, because for any matrix A ∈
Mm,n(Np) the finite set {τA |∀τ = (ρ, σ) ∈ G} contains its exact upper bound
c(A) and answers the canonicity requirements:

c(A)
G
∼ A and

c(A) = c(B) iff A
G
∼ B,

which shows that the correspondence c defined by the equality (2) is a canonical
mapping. �

The image c(A) of the matrix A ∈ Mm,n(Np) by the canonical mapping
c is the canonical representative of the orbit of the matrix A under the action of
the group G = Sm(π′) × Sn(π′′) over the set Mm,n(Np).

354 Zlatka Teneva Mateva

Definition. The matrix c(A), defined by the equality (2) is the canonical
form of the matrix A under the group G.

The partitions π′ and π′′ allow us to add new restrictions for the group
G, which makes the algorithm more applicable.

Without loss of generality we can work with regular partitions.

3.3. The trivial algorithm solving problem 3.1 is contained in its defini-
tion, and implies applying of all matrix permutations of the group
G = Sm(π′) × Sn(π′′) on A and choosing the maximal of the obtained matri-
ces. To avoid saving of all the matrices τA , τ ∈ G only the currently maximal
matrix Ã is saved. Unfortunately, this approach is only applicable for very small
groups of permutations.

Mathematical basis of the main algorithm

3.4. Let π′′ be a partition of the column set of the matrices of Mm,n(Np).
Of special importance for the algorithm is the function s(A, π ′′) : Mm,n(Np) →
Mm,n(Np), which transforms a matrix A ∈ Mm,n(Np) into the matrix that is
obtained from A by sorting of the columns in the cells of the partition π ′′ in
descending order.

Proposition. If π′′ and η′′ are two partitions of the set A
′′ of the columns

of a matrix A ∈ Mm,n(Np) and η′′ is finer than π′′, then the matrix sort(A, π′′) is
greater or equal to the matrix s(A, η ′′), i.e. if η′′ 4 π′′ then s(A, η′′) 6 s(A, π′′).

The proof of this proposition follows directly from the way the matrices
s(A, η′′) and sort(A, π′′) are obtained.

3.5. The next proposition is used in almost all similar algorithms.

Proposition. The canonical matrix c(A) is equal to the greatest matrix
in the set

{s(ρA, π′′) | ρ ∈ Sm(π′)}.

P r o o f. Let τ = (ρ, σ) be a pair of permutations which does not change
the partitions π′ and π′′. Then

τA ≤ s(τA, π′′) = s((ρ, σ)A, π′′) = s(ρ(σA), π′′) = s(ρA, π′′),
Therefore

c(A) = max{τA|τ ∈ G} = max{s(ρA, π′′)|ρ ∈ Sm(π′′)}. �

Constructing a canonical form of a matrix . . . 355

Corollary. To find the matrix c(A) it is enough to consider only the
elements of the group Sm(π′). For each ρ ∈ Sm(π′) the matrix s(ρA, π′′) is
determined by some fast sorting algorithm.

Applying this consequence makes the number of the tested permutations
|Sn(π′′)| times smaller.

3.6. The next proposition allows us to drop some of the permutations of
the group Sm(π′). It follows directly from the lexicographic order in Mm,n(Np).

Proposition. If A and B are two matrices of the set Mm,n(Np) and
A < B, then for each natural number s ∈ N

+
m it holds

A(1, 2, . . . , s) ≤ B(1, 2, . . . , s).

Corollary. c(A)(1, . . . , t) ≥ Ã(1, . . . , t) for each s ∈ N
+
m.

Corollary. If for the permutation ρ = (ρ1, . . . , ρt, . . . , ρm) ∈ Sm(π′) a
natural number t ∈ N

+
m exists, such that s(ρÃ(1, . . . , t), π′′) < Ã(1, . . . , t), then

for each permutation ϕ = (ρ1, . . . , ρt, ϕt+1, . . . , ϕm) it holds that s(ϕÃ, π′′) < Ã.

All permutations ϕ from Consequence 2, can be omitted because ϕÃ <

Ã ≤ c(A) for them. The smaller the number t of the position, in which the
difference is found, the bigger the number of omitted permutations. Their num-
ber is greatest when the canonical matrix c(A) is obtained by the permuta-
tion considered first. Note that even then the algorithm cannot finish, because
it is not proved that this is the matrix wanted. All permutations for which
c(A) = s(ρA, π′′) have to be checked. i.e, all permutations of the automorphism
group of the canonical matrix c(A).

3.7. The next proposition by Grund [15] allows us to cut off many branches
of the search tree of the group Sm(π′), each time when a new automorphism of
the matrix Ã is found.

Proposition. Let the group G operate on the nonempty set Ω and let
Γ ≤ G. Consider ω ∈ Ω such that ϕω ≤ ω for each ϕ ∈ Γ and let there exist
ϕ̂ ∈ Γ and ψ ∈ G for which ϕ̂ψω = ω. Then

(3) ϕψω ≤ ω, ∀ϕ ∈ Γ.

P r o o f. Let ϕ ∈ Γ. Then ϕψω = ϕϕ̂−1ϕ̂ψω = ϕϕ̂−1ω ≤ ω, because
ϕϕ̂−1 ∈ Γ. �

356 Zlatka Teneva Mateva

Corollary. Let Ã be a matrix of Mm,n(Np). Let Γ be a subgroup of the

group Sm(π′) and let s(ϕÃ, π′′) ≤ Ã for each ϕ ∈ Γ. If ψ ∈ Sm(π′) and ϕ̂ ∈ Γ
exist, such that ϕ̂ψÃ = Ã, then for each ϕ ∈ Γ it holds s(ϕψÃ, π′′) ≤ Ã.

P r o o f. Follows from the last proposition by setting G = Sm(π′), Ω =
Mm,n(Np) and ω = Ã. �

Namely, when all elements ϕ ∈ Γ of the group Γ ≤ Sm(π′) have been
checked and no counter-example to the maximality of the matrix Ã has been
found, then finding a permutation of the rows ψ ∈ Sm(π′)\Γ, which is an auto-
morphism, allows further skipping of the elements of the right coset Γϕ.

3.8. Proposition. Let A < Sm(π′) be a group of automorphism row
permutations of the matrix A, B = s(ρA, π ′′) for some ρ ∈ Sm(π′) \ A and
OrbA(i) be the orbit of the row a′i ∈ A

′ under the action of the group A over the
set A

′. Then:

1) The group B = ρAρ−1 is the group of automorphism row permutations
of the matrix B;

2) the orbit OrbB(i) = ρ−1OrbA(ρi).

P r o o f. This proposition follows directly from the homomorphism prin-
ciple [10] applied on the operartion of the group Sm(π′) on the row sets of the
matrices A and B. �

When a new solution closer to the canonical matrix c(A) has been ob-
tained, this proposition gives an easy way to transform the orbits and stabilizers
of the previous matrix Ãold into the corresponding orbits and stabilizers of the
new matrix Ãnew. This way the search in the tree corresponding to Ãnew does
not start from the beginning, but goes on from the corresponding branch.

Description of the main algorithm.

3.9. This is a recursive backtrack search algorithm. By 3.5 the choice set
is the group Sm(π′) of row permutations, which do not change the partition π ′.
The root of the search tree associated with this group is the empty set. The first
level of nodes are the numbers of the rows of the first cell π̃ ′(1) of the partition
π′ (see 2.2). Each j-th level node j ∈ N

+
m is an element of the cell π̃′(j) and

corresponds to a partial solution (i1, i2, . . . , ij) formed by the nodes on the path
from the root to the node. The descendants of the node are the elements of the
cell π̃′(j + 1) which are not in a previous level of the ancestor branch. They
correspond to partial solutions (i1, . . . , ij , ij+1) obtained by adding the element
ij+1 ∈ π′(j+1)\{i1, . . . , ij}. The leaves of the tree are at level m and correspond
to complete solutions.

Constructing a canonical form of a matrix . . . 357

For a more compact and formal description of the algorithm, we use
pseudocode of a syntax close to that of a high level programming language.

3.10. Procedure CANONICAL-FORM (Step 1) provides the neces-
sary input data (the matrix A and the partitions π ′ and π′′), initializes the matrix
Ã (containing the lexicographically greatest matrix, obtained by now) and the
set G (containing the obtained full solutions), makes the first call of the recursive
procedure SEARCH and outputs the results.

0: procedure CANONICAL-FORM;
1: begin
2: INPUT (A, π′, π′′)

3: Ã := s(A, π′′)
4: G := {}
5: SEARCH ({}, 0))

6: c(A) := Ã

7: OUTPUT (c(A))
8: end.

Step 1. Starting procedure.

3.11. Procedure SEARCH is recursive, it performs search in depth.

0: procedure SEARCH ((i1, . . . , is):partial solution, s : 0..m)
1: begin
2: if s < m then
3: begin
4: FORM-CHOICE-SET ((i1, . . . , is), s);

-forms the choice set Is+1

5: for all is+1 ∈ Is+1 do
6: SEARCH ((i1, . . . , is+1), s+ 1)
7: end
8: else
9: PROCESS-COMPLETE-SOLUTION ((i1, . . . , is))

10: end

Step 2. Recursive procedure performing in depth search

It calls FORM-CHOICE-SET (line 4) and PROCESS-COMPLETE-SO-
LUTION (line 9).

3.12. Procedure FORM-CHOICE-SET (Step 3) gets as input the
partial solution (i1, . . . , it) and forms the set It+1 of numbers of rows which can
be put in (t+ 1)-st position of the extended partial solution (i1, . . . , it, it+1).

358 Zlatka Teneva Mateva

0: procedure form-choice-set ((i1, . . . , it):partial solution, t : 0..m)
1: begin
2: if t = 0 then I1 := π′(1)
3: else

4: if Ã(1,...,t) > s(Ã(i1,...,it), π
′′) then

5: It+1 := ∅
6: else
7: begin
8: η′′ := finer-partition ((i1, . . . , it), π

′′)
-η′′ is a finer partition of the columns

9: Ĩt+1 := π′(t+ 1) \{i1, . . . , it}

-̃It+1 is an extended choice set

10: for all i ∈ Ĩt+1 do Spect[i]:=spect(i, η′′)

11: BestSpect := max{Spect[i] | i ∈ Ĩt+1}

12: It+1 := {i ∈ Ĩt+1 | Spect[i] = BestSpect}
13: end
14: end

Step 3. Procedure determining the choice set It+1.

At the first call of FORM-CHOICE-SET (t = 0), the choice set I1 = π̃′(1)
is generated, and at any next call – the set It+1, which (by 3.6) is empty iff the
matrix s(Ã(i1, . . . , it), π

′′) is smaller than the matrix of the first t rows of Ã.

When Ã(1, . . . , t) ≤ s(Ã(i1, . . . , it), π
′′), the partial solution (i1, . . . , it)

has to be extended. How is It+1 formed?

Line 8 in Step 3 defines a new partition η ′′ of the column set, such that:

1) η′′ is finer than π′′ (η′′ 4 π′′) and

2) the columns in the different cells of η ′′ in the matrix s(Ã(i1, . . . , it), π
′′)

are equal.

This is done by the function FINER-PARTITION ((i1, . . . , it), π
′′).

3.13. Line 9 in Step 3 creates an extended choice set Ĩt+1 ⊇ It+1. It
contains the rows which can be put at position t + 1 without changing π ′. The
set consists of all indexes (not in the partial solution (i1, . . . , it)) of rows of the
cell of the partition π′ which contains row a′t+1, i.e. Ĩt+1 = π′(t+ 1)\{i1, . . . , it}.

For each i ∈ Ĩt+1 a vector is formed, which is called spectrum of the row a′i
under the partition η′′ and denoted by Spect(i). The vector is obtained from the
i-th row of the matrix Ã, by sorting of the elements ai,j in descending order in
the different cells of η′′ (function SPECT(i, η′′), line 10 of Step 3). The greatest
of all spectra thus obtained is chosen and the numbers of the rows with this
spectrum form the set It+1 (lines 11 and 12 of Step 3). As similar effect to that

Constructing a canonical form of a matrix . . . 359

of the spectrum usage is achieved by McKay [22] and Bouyukliev [4] by using
invariants suitable for binary matrices. The spectrum is defined and effective for
any integer matrix.

Remark. When the partition η′′ is discrete, the choice sets Iu for t < u

≤ m are cells of a discrete partition of the set of the rows which remained outside
the partial solution. In that case the algorithm can go on to sort these rows in
lexicographically descending order without changing the partitions π ′ and η′′.

3.14. The procedure PROCESS-COMPLETE-SOLUTION pro-
cesses the complete solutions and the data they hold. Two types are offered.

First type. It is useful with small matrices, matrices with small auto-
morphism groups, or matrices for which the starting partition π ′ is of relatively
small cells. If not, it is quite slow, and in some cases it cannot solve the problem
in reasonable time (for instance filtering away of equivalent Hadamard matrices
of order 64 [20]). This type finds in addition all automorphisms of the group
Aut(c(A), S) , i.e, the full group of automorphisms of the canonical matrix c(A)
preserving π′ and π′′.

procedure process-complete-solution ((i1, . . . , im) : compl solution)
1: begin

2: if s(Ã(i1, . . . , im), π′′) > Ã then
3: begin

4: Ã := s(Ã(i1, . . . , im), π′′)
5: G := (i1, . . . , im)G(i1, . . . , im)−1

-transforms the set of automorphisms G by 3.8

6: for all t ∈ N+
m do

7: It := (i1, . . . , im)It

-transforms the choice sets.

8: end
9: else

10: if s(Ã(i1, . . . , im), π′′) = Ã then

-(i1, . . . , im) is a new automorphism of Ã

11: G := G
⋃

(i1, . . . , im)
12: end

Step 4. Procedure for processing of each complete solution (Type 1)

Consider now the changes of the set G of the automorphisms of Ã which
have been currently found.

If s(Ã(i1, . . . , im), π′′) > Ã, then the matrix Ã must be changed (line 4).
As a result the set G will contain the automorphisms of the previous matrix Ã,
not of the new one. That is why line 5 transforms it by 3.8.

360 Zlatka Teneva Mateva

If s(Ã(i1, . . . , im), π′′) = Ã, the current canonical matrix Ã is not changed,
and the permutation (i1, . . . , im) is its automorphism and is added to G (line 12).

3.15. Second type.

0: procedure process-complete-solution ((i1, . . . , im) : complete solution)
1: begin

2: if s(Ã(i1, . . . , im), π′′) > Ã then
3: begin

4: Ã := s(Ã(i1, . . . , im), π′′)
5: G := (i1, . . . , im)G(i1, . . . , im)−1

-transforms the set of automorphisms G

by 3.8, i.e. Gnew := (i1, . . . , im)Gold(i1, . . . , im)−1

6: ΠG := (i1, . . . , im)ΠG

-transforms the orbits of the group with generating set Gold

-into the corresponding orbits of the group generated by Gnew

by 3.8, i.e. ΠGnew
:= (i1, . . . , im)ΠGold

7: for all t ∈ N+
m do

8: It := (i1, . . . , im)It

-transforms the choice sets

9: end
10: else

11: if s(Ã(i1, . . . , im), π′′) = Ã then

-(i1, . . . , im) is a new automorphism of Ã

12 begin
13: G := G

⋃
(i1, . . . , im)

14: modify-orbits-and-choice-sets

15 end
16: end

Step 5. Procedure for processing of each complete solution (Type 2)

By Type 2. When a new automorphism permutation of the rows of Ã is
found, the orbits of the group are determined with respect to the new generat-
ing set G (line 13 of Step 5). As a result the number of orbits might become
smaller as some of them might be united. Then modify-orbits-and-choice-

sets checks the choice sets I1, . . . , Im and if some of them contains more than
one representative of one and the same cell of the partition Π′

G, only the smallest
one is left. This reduction of the choice sets leads to substantial improvement of
the computation speed. Meringer [15] achieves similar effect of cutting off some
search tree branches by maintaining a sequence of automorphism groups that
contain each other.

Constructing a canonical form of a matrix . . . 361

3.16. Let us illustrate the work of the algorithm by an example.
H Example. Let

A =




1 0 1 1 1 0 0 0 0 1
0 0 1 1 0 1 1 0 1 0
1 1 0 1 0 0 0 1 1 0
0 0 0 0 1 0 1 1 1 1
0 1 1 0 0 1 0 1 0 1
1 1 0 0 1 1 1 0 0 0




be the incidence matrix of a 2-(6,3,2) design.
We want to find the canonical form of the matrix A under the operation

of the group of all matrix permutations, which fix its first row (corresponds to the
group of automorphisms of the design which fix its first point).

We start with partitions π′ = {{1}, {2, 3, 4, 5, 6}} and π′′ = {1, 2, . . . , 10}.
The group S of matrix permutations preserving these partitions has 5!10! ele-
ments. We will follow the work of the algorithm in details.

1) Initialization – by CANONICAL-FORM (t = 0). At the beginning
c(A) is

Ã = s(A, π′′) =




1 1 1 1 1 0 0 0 0 0
1 1 0 0 0 1 1 1 0 0
1 0 1 0 0 1 0 0 1 1
0 0 0 1 1 1 1 0 1 0
0 1 0 1 0 0 0 1 1 1
0 0 1 0 1 0 1 1 0 1



,

and G is the empty set.
2) Forwards – first call of SEARCH. The choice set for the first element

is I1 = π̃′(1) = {1}. The first partial solution (1) is chosen and the number 1 is
taken out of the choice set I1, i.e, −→ I1 = ∅ .

To form the choice set of the second element, we consequently define:
I the set Ĩ2 = {2, 3, 4, 5, 6} (of all elements of the cell π̃ ′(2), which do not take
part in the current partial solution);
I the finer partition η′′ = {1, 2, 3, 4, 5}, {6, 7, 8, 9, 10},
I the vectors Spect(i) = (1, 1, 0, 0, 0, 1, 1, 1, 0, 0), for i ∈ Ĩ2.

In this case all rows with numbers in Ĩ2 have one and the same spectrum
under the partition η′′, this is why the choice set for the second element of the
partial solution is I2 = {2, 3, 4, 5, 6}.

3) Forwards – second call of SEARCH. The partial solution (1) is ex-
tended by adding a second element equal to 2 and then taking 2 out of I2, i.e,

362 Zlatka Teneva Mateva

−→ I2 = {3, 4, 5, 6}. The matrix

s(Ã(1, 2), π′′) =

(
1 1 1 1 1 0 0 0 0 0
1 1 0 0 0 1 1 1 0 0

)

is equal to the matrix Ã(1, 2), which shows that the partial solution (1,2) has to
be extended. The choice set I3 is defined by consequently finding:
I the set Ĩ3 = {3, 4, 5, 6};
I the partition η′′ = {1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10};
I the spectra of the rows of the set Ĩ3 under the partition η′′:

Spect(3) = Spect(5) = (1, 0, 1, 0, 0, 1, 0, 0, 1, 1),

Spect(4) = Spect(6) = (0, 0, 1, 1, 0, 1, 1, 0, 1, 0);
I The spectrum of the third and fifth rows is lexicographically greatest and thus
I3 = {3, 5}

4)Forwards – in the way described above the next partial solutions are
obtained, namely:

(1, 2, 3) −→ I3 = {5}, I4 = {5},
(1, 2, 3, 5) −→ I4 = ∅, I5 = {6},
(1, 2, 3, 5, 6) −→ I5 = ∅, I6 = {4} and (1, 2, 3, 5, 6, 4) −→ I6 = ∅.
The matrix

s(Ã(1, 2, 3, 5, 6, 4), π′′) =




1 1 1 1 1 0 0 0 0 0
1 1 0 0 0 1 1 1 0 0
1 0 1 0 0 1 0 0 1 1
0 1 0 1 0 0 1 0 1 1
0 0 1 0 1 0 1 1 1 0
0 0 0 1 1 1 0 1 0 1



,

corresponding to the obtained complete solution is closer to the canonical form
and is saved as c(A), which leads to changes in:
I The matrix Ã = s(Ã(1, 2, 3, 5, 6, 4), π′′);
I the set of automorphism row permutations and G = {e′ = (1, 2, 3, 4, 5, 6)} and
I the choice sets It, t = N

+
6 respectively: I6 = I5 = I4 = ∅, I3 = {4}, I2 =

{4, 5, 6}, I1 = ∅.
5) Backwards – it goes back until a nonempty choice set is found, i.e,

until I3 = {4} and the partial solution is (1, 2).

6) Forwards – as described above until a new complete solution is found.
The matrix corresponding to it s(Ã(1, 2, 4, 3, 6, 5), π′′) is equal to the matrix Ã,
which means that the permutation α1 = (1)(2)(3, 4)(5, 6) is an automorphism
Ã. The numbers 4 and 6 are taken out of the only nonempty choice set I2 =

Constructing a canonical form of a matrix . . . 363

{3, 4, 5, 6} because they are in one and the same orbit with smaller numbers.
The choice sets I3, I4, I5 and I6 are empty, and thus the group with generating set
G = {e′, α1} is the full group of automorphisms fixing the first two rows of the
matrix Ã, and the partition corresponding to it is ΠG = {{1}, {2}, {3, 4}, {5, 6}}.

7)Backwards – until partial solution (1) and I2 = {3, 5}.
8)Forwards – until the next complete solution (1,3,2,5,4,6). It is an auto-

morphism α2 = (1)(2, 3)(4, 5)(6) of Ã. The group of automorphisms generated by
G = {e′, α1, α2} defines partition ΠG = {{1}{2, 3, 4, 5, 6}}. Taking into account
that 3 and 5 are in one and the same cell of this partition, the choice set I2 = {5}
is reduced to the empty set. Thus all choice sets are empty, and the algorithm
stops its work.

As a result we obtain that the canonical form of the incidence matrix
under the group of matrix permutations S6(π

′) × S10(π
′′) is

c(A) = Ã =




1 1 1 1 1 0 0 0 0 0
1 1 0 0 0 1 1 1 0 0
1 0 1 0 0 1 0 0 1 1
0 1 0 1 0 0 1 0 1 1
0 0 1 0 1 0 1 1 1 0
0 0 0 1 1 1 0 1 0 1




and the group Aut(c(A), Sm(π′)) of automorphisms fixing the first row has gen-
erating set G = {e′, α1, α2}.

4. Combinatorial design problems. For the basic concepts and
notations concerning combinatorial designs, refer, for instance, to [1] or [30].

Balanced Incomplete Block Design (BIBD) with parameters
2-(v, b, r, k, λ) (2-(v, k, λ) design or 2-design for short) is a pair {V,B} where
V = {P1, P2, . . . , Pv} is a finite set of v > k ≥ 2 elements (called points) and
B = {B1, B2, . . . , Bb} is a collection of b k-element subsets (called blocks), such
that each pair of points of V is contained in exactly λ blocks of B. The parameters
of a 2-design must satisfy the following conditions

b.k = v.r, r.(k − 1) = λ.(v − 1) and b ≥ v(Fisher’s inequality).

An incidence matrix of a 2-(v, b, r, k, λ) design is a (0, 1) matrix with v
rows and b columns, where the element of the i-th row (i = 1, 2, . . . , v) and j-th
column (j = 1, 2, . . . , b) is 1 if the i-th point of V occurs in the j-th block of B
(Pi ∈ Bj) and 0 otherwise. The design is completely determined by its incidence
matrix.

364 Zlatka Teneva Mateva

Isomorphic BIBDs.Two designs are isomorphic if there exists a one-to-
one correspondence between the point and block sets of the first design and the
point and block sets of the second design, and if this one-to-one correspondence
does not change the incidence. The incidence matrices of two isomorphic designs
are equivalent.

Automorphism of a BIBD. An automorphism is an isomorphism of
the design to itself, i.e, a permutation of the points that transforms the blocks
into blocks. The set of all automorphisms of a design forms a group called the
full group of automorphisms. Each subgroup of this group is a group of automor-
phisms of the design.

Orbit Matrix of a BIBD with automorphism of order p. Let
D(V,B) be a 2-(v, k, λ) design with an automorphism of a prime order p. Without
loss of generality we can assume that the automorphism ϕ = (ρ, σ) acts on the
points by

ρ = (1, . . . , p)(p+ 1, . . . , 2p) . . . ((mp− p+ 1, . . . ,mp)(mp+ 1) . . . (v)

and on the blocks by

σ = (1, . . . , p)(p+ 1, . . . , 2p) . . . ((np− p+ 1, . . . , np)(mnp+ 1) . . . (b)

and it partitions the points and blocks of the design into fixed (trivial) and non-
fixed orbits. The ((m + v −mp) × (n + b − np)) matrix S with entries equal to
the number of points of the i-th point orbit in any block of the j-th block orbit
is called orbit matrix of the design D with respect to the automorphism ϕ.

Local approach. This is a method of generating 2-designs with an
automorphism of prime order p. By this method all the possible non-equivalent
orbit matrices are formed first, and then these matrices are extended to incidence
matrices of designs.

Here we present the algorithm applications for orbit matrices and inci-
dence matrices of combinatorial designs.

4.1. Canonical form of orbit matrix. Let the ((m + f) × (n + h))
matrix A be an orbit matrix of a 2-(v, k, λ) design with an automorphism of prime
order p with f fixed points and h fixed blocks. Most commonly all non-fixed point
(block) orbits of A correspond to mutually interchangeable rows (columns) of A
and define the first cell, and well as all fixed point (block) orbits define the other
cell of the points (blocks) partition π ′ (π′′), i.e, if f > 0 the partition π′ has two
cells, if f = 0 it has one, if h > 0 the partition π ′′ has two cells and if h = 0 it
has one.

Constructing a canonical form of a matrix . . . 365

Let the rows and columns of the matrix A be ordered in such a way that
the first m rows (n columns) correspond to non-fixed point (block) orbits and the
next f rows (h columns) to the fixed orbits. The set of all possible permutations
of the rows which preserve the partition π ′ is Sm+f (π′) = Sm × Sf and the
set of all possible permutations of the columns that preserve the partition π ′′ is
Sn+h(π′′) = Sn ×Sh. The set G = Sm+f (π′)×Sn+h(π′′) is the complete group of
matrix permutations of A. If in the given task for constructing the 2-design there
are no additional limitations considering the type of the possible automorphism,
we will work with the group G. In other cases we will work with sub-groups of
G derived from sub-groups of Sm+f (π′) and Sn+h(π′′), and respectively of the
symmetric groups Sm, Sf , Sn, Sh.

4.2. Equivalence test of orbit matrices. According to 3.2 if G is a
group of matrix permutations and the matrices A and B are G-equivalent then

their canonical forms under the operation of G, are equal, i.e, if A
G
∼ B then

c(A) = c(B).

This allows us to establish G-equivalence of two orbit matrices by com-
paring their G-canonical forms. When they are equal, then the matrices are
G-equivalent and otherwise the matrices are inequivalent.

4.3. Isomorphism test of designs. In a similar way, we can perform an
isomorphism test of designs by comparing the canonical forms of their incidence
matrices according to the action of the group Sv × Sb.

4.4. Full automorphism group of the orbit matrix. Let A be an
orbit matrix of a 2-design and G the related group of matrix permutations. We
can find the full group Aut(c(A)) ≤ G of automorphisms of the matrix A in its
canonical form under the action of G, or only its generating set (see Step.5).

4.5. Full automorphism group of a design. To find the full group of
automorphisms of a design, we find the group of automorphism row permutations
of the canonical form of the incidence matrix of the design under the trivial
partitions π′ = {1, . . . , v} and π′ = {1, . . . , b}.

5. Applications. The algorithms described in this work were used in
parallel with programs described in [29] for the classification up to isomorphism,
and for the computing the order of the automorphism group of 2-(15,7,6) designs
with automorphisms of orders 7 and 5 [16], 2-(15,7,6) designs with automorphisms
of order 3 [18], 2-(19,9,8) designs with automorphisms of order 3 [19], Hadamard
2-(63,31,15) designs invariant under the dihedral group of order 10 [17], and to

366 Zlatka Teneva Mateva

compute the order of automorphism groups needed for the classification of the
line spreads of PG(5,2)[20].

REFERE NCES

[1] Beth Th., D. Jungnickel, H. Lenz. Design Theory, Cambridge Univer-
sity Press, 1993.

[2] Bosma W., J. Cannon (Eds) Handbook of Magma Functions, Edition 2.13
(2006), 4350 pages.

[3] Boukliev I. ’Q – EXTENSION’– strategy in algorithms, Proceedings of
the International Workshop ACCT, Bansko, Bulgaria, 2000, 84–89.

[4] Boukliev I. Algorithmic approaches to the study of linear codes, Doctor
of sciences thesis, Institute of Mathematics and Informatics, BAS, Sofia,
Bulgaria, 2008 (in Bulgarian).

[5] Carter J. On the Existence of a Projective Plane of Order Ten, PhD Thesis,
Univ. of Calif., Berkeley, 1974.

[6] Denny P., P. B. Gibbons. Case studies and new results in combinatorial
enumeration J. Combin. Des., 2000, 239–260.

[7] Denny P. C., R. Mathon. A census of t−(t+8, t+2, 4) designs, 2 ≤ t ≤ 4,
J. Statist. Plann. Inference, 106 (2002) 5–19.

[8] The GAP Group, GAP – Groups, Algorithms, and Programming, Version
4.4.10; 2007, (http://www.gap-system.org).

[9] Grund R., A.Kerber, R.Laue. MOLGEN, ein Computeralgebra–System
für die Konstruktion molekularer Graphen. Communications in mathemati-
cal chemistry (Match) 27 (1992), 87–131.

[10] Grüner T., R.Laue, M.Meringer. Algorithms for group actions: homo-
morphism principle and orderly generation applied to graphs, DIMACS Se-
ries in Discrete Mathematics and Theoretical Computer Science, 28 (1997),
113–122.

Constructing a canonical form of a matrix . . . 367

[11] Kapralov S. Algorithms for generation and study of orbit matrices, Sci-
entific conference dedicated to the 100 anniversary of academic Lubomir
Chakalov, 14–15.02.1986 (in Bulgarian).

[12] Kaski P. Algorithms for classification of combinatorial objects, Research
Report A94, Helsinki University of Technology, Laboratory for Theoretical
Computer Science, Espoo, Finland, June 2005.

[13] Krčadinac V. Construction and classification of finite structures by com-
puter. PhD thesis, May 2004.

[14] Kaski P., P. R. Ostergard. Classification Algorithms for Codes and
Designs, Springer-Verlag, Berlin Heidelberg, 2006.

[15] Meringer M. Erzeugung regularer Graphen. Master’s thesis, Universitat
Bayreuth, January 1996.

[16] Mateva Z., S. Topalova. Enumeration of 2-(15,7,6) designs with auto-
morphisms of order 7 or 5. Mathematics and Education in Mathematics 31
(2006), 270–274.

[17] Mateva Z., S. Topalova. Hadamard 2-(63,31,15) Designs Invariant un-
der the Dihedral Group of Order 10, International Conference Pioneers of
Bulgarian Mathematics, Book of Abstracts, Sofia, July 8–10, 2006, 77.

[18] Mateva Z., S. Topalova. Quasidoubles of Hadamard 2-(15,7,3) Designs
with Automorphisms of Order 3, Mathematics and Education in Mathema-
tics 32 (2007), 180–185.

[19] Mateva Z., S. Topalova. Doubles of Hadamard 2-(19,9,4) Designs with
Automorphisms of Order 3. In: Proceedings of the Fifth International Work-
shop on Optimal Codes and Related Topics, Balchik, June 2007, Bulgaria.

[20] Mateva Z., S. Topalova. Line spreads of PG(5,2), J. Comb. Des., sub-
mitted.

[21] Meringer M. Fast generation of regular graphs and construction of cages,
J. Graph Theory 30 (1999) No. 2, 137–146.

[22] McKay B. Nauty user’s guide (version 1.5), Technical Report TR-CS-90-02,
Computer Science Department, Australian National University, 1990.

368 Zlatka Teneva Mateva

[23] McKay B. Practical graph isomorphism. Congressus Numeration, 30
(1981), 45–87.

[24] Overton M., A.Proskurowski. Canonical incidence matrices of graphs,
Springer Netherlands, Vol. 19, No 2 (June, 1979), 271–273.

[25] Kaski P., P.R.J.Ostergard. Classification Algorithms for Codes and De-
signs, Springer, Berlin, 2006.

[26] Ostergard P. Classification of binary/ternary one-error-correcting codes,
J. Discrete Mathematics 223 (2000), 253–262.

[27] Soicher L. The GRAPE package for GAP, Version 4.3, 2006,
(http://www.maths.qmul.ac.uk/~leonard/grape/) .

[28] Soicher L. The DESIGN package for GAP, Version 1.3, 2006,
(http://designtheory.org/software/~gap_design/).

[29] Topalova S. Construction and study of combinatorial designs with prede-
fined automorphisms, Ph.D. Thesis, Institute of Mathematics and Informat-
ics, Sofia, 1997 (in Bulgarian).

[30] Tonchev V. Combinatorial configurations, Longman Scientific and Technical,
New York, 1988.

[31] Walker R. An Enumerative Technique for a Class of Combinatorial Problems,
Proc. AMS Symp. Appl. Math., Vol. X (1960), 91–94.

Zlatka Teneva Mateva

Department of Mathematics

Technical University

Varna, Bulgaria

e-mail: ziz@abv.bg

Received December 1, 2008

Final Accepted January 28, 2009

