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NECESSARY AND SUFFICIENT CONDITIONS FOR THE
EXTENDABILITY OF TERNARY LINEAR CODES

Kei Okamoto

ABSTRACT. We give the necessary and sufficient conditions for the extend-
ability of ternary linear codes of dimension & > 5 with minimum distance
d =1 or 2 (mod 3) from a geometrical point of view.

1. Introduction. Let V(n,q) denote the vector space of n-tuples over
GF(q), the finite field of order g. A linear code C' is an [n, k, d], code over GF(q)
of length n with dimension k¥ whose minimum Hamming distance is d. The weight
of a vector € V(n,q), denoted by wt(x), is the number of nonzero coordinate
positions in . Let A; be the number of codewords of C' with weight 7. We only
consider non-degenerate codes having no coordinate which is identically zero.

The code obtained by deleting the same coordinate from each codeword of
C is called a punctured code of C'. If there exists an [n+1, k,d+ 1], code C" which
gives C' as a punctured code, C is called extendable (to C’) and C’ is an extension
of C'. Tt is well known that a binary linear code with odd d is extendable by adding
an overall parity check. The extendability of linear codes has been studied by Hill
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[1, 2], van Eupen and Lisonek [13], Simonis [12] and Maruta [5, 6, 7, 8]. Recently,
Kohnert [3] investigates how to get an [n+[, k, d+s], code from a non-extendable
[n, k,d], code ((I, s)-extension).

Let C be an [n,k,d]s code with k& > 3, ged(3,d) = 1. We define three
non-negative integers ®q, ®1, . as follows:

CI)OZ%ZAZH @1:% > A (I)e:% A,

3|1,i#0 i20,d (mod 3) d<i=d(mod 3)

where the notation x|y means that z is a divisor of y. The pair of integers (®g, 1)
is called the diversity of C. Let Dy be the set of all possible diversities of such
codes. Dy, has been determined in [8] for £ < 6 and in [10] for k¥ > 7. For k > 3,
let D;; and D,j be as follows:

D;: = {(ek_g, 0)7 (ek—fﬂa 2- 3k72)’ (Hk—Qa 2. 3k72)’ (Hk:—Q + 3k72a 3k72)}7
,Dlj = Dy \D;:’

where 6; = (3/t! —1)/2. It is known that Dj is included in Dy and that C is
extendable if (&g, 1) € Dy ([8]). Hence it suffices to investigate the extendability
of C for (®g, ®1) € D; . It is also known that D5 = {(4,3)} and that an [n,3,d]3
code with diversity (4,3) is extendable if and only if ®, > 0 ([8]). The necessary
and sufficient conditions for the extendability of C with (®¢,®;1) € D} are given
in [10] for k = 4 and in [11] for £ = 5. In this paper, we give the necessary and
sufficient conditions for the extendability of an [n, k, d]3 code with ged(3,d) =1,
general k > 5, whose diversity is in D:. It is expected that our results would
be applicable to (I, s)-extension of ternary linear codes (e.g. see [14]). We also
survey the known results about the extendability of ternary linear codes before
giving our main theorem (Theorem 4.5).

2. Geometric preliminaries. We denote by PG(r, ¢) the projective
geometry of dimension r over GF(q). A j-flat is a projective subspace of dimension
j in PG(r,q). O-flats, 1-flats, 2-flats, 3-flats and (r — 1)-flats are called points,
lines, planes, solids and hyperplanes respectively as usual. We denote by F; the
set of j-flats of PG(r,q) and denote by 6; the number of points in a j-flat, i.e.
0; = [PG(j,q)| = (¢ —1)/(g — 1), where |T| denotes the number of elements
in T for a given set T'. We set 6; = 0 when j < 0 for convenience.

For an [n, k,d], code C with a generator matrix GG, the columns of G can
be considered as a multiset of n points in ¥ = PG(k — 1,q) denoted by G. An
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i-point is a point of ¥ which has multiplicity i in G. Let ¥; be the set of i-points
in ¥. For any subset S of ¥ we define the multiplicity of S with respect to C' as

0
me(S) = i|SnT,
i=1
where g =max{i | an i-point exists}.

Then we obtain the partition ¥ = ¥qU X7 U--- U X, such that

n = me(2),
n—d = max{mc(m)| 7€ Fr_a}.

Conversely such a partition of ¥ as above gives an [n, k,d], code in the natural
manner. Since (n + 1) — (d+ 1) = n — d, we get the following.

Lemma 2.1. C is extendable if and only if there exists a point P € %
such that mo(m) < n —d for all hyperplanes w through P.

Let ¥* be the dual space of ¥ (considering Fj_o as the set of points of
¥*). Then Lemma 2.1 is equivalent to the following:

Lemma 2.2. C is extendable if and only if there exists a hyperplane 11
of X* such that
II C {7T € Fr_o ’ mc(w) < n—d}.

Now, let C' be an [n,k,d|3 code with diversity (®g,P1), ged(3,d) =
k > 3, and let 7} be the set of j-flats of £*, ie., Ff = F9;,0 < j < k-2
We define Fy, Fi, F,, F and F as follows:

[u—

Fo = {reF|me(n)=n (mod 3)},
F = {mreF | mc(r)#n, n—d (mod 3)},
F. = {meFy|me(r)<n—d, mg(n)=n—d (mod 3)},

F = FyUF, F=FUF,.

Then we have ®¢ = |Fy|, @1 = |Fy|, @ = |Fe| since |[{m € F_o | me(n) =i}| =
Ap—i/(qg —1). Lemma 2.2 implies the following:

Lemma 2.3. C is extendable if and only if F contains a hyperplane of
3*.
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We consider the extendability of C' from this geometrical point of view.
A tflat IT of ¥* with [ILN Fy| =4, [ITN Fy| = j is called an (4, 7); flat. A (1,0)0
flat is just a point of Fy. An (4,7); flat, an (7, 7)2 flat and an (i, j)3 flat are called
an (i, j)-line, an (i, j)-plane and an (i, j)-solid respectively.

Let A; be the set of all possible (4, j) for which an (4, j)-line exists in F;.
Then we have

A= {(17 0), <07 2)7 (27 1)7 (17 3)7 (47 0)}7
see [8]. Assume 2 <t < k — 1 and let IT € F;. Denote by clt]) the number of
(i,7)¢—1 flats in IT and let gpgt) = |IIN Fs|, s = 0,1. The pair (cp(()t),gpgt)) is called
the diversity of I1 and the list of c(t)’s is called its spectrum. Let A; be the set

]
of all possible (gp(()t), gogt)). A; and the corresponding spectra are determined as in

Table 1 for ¢ = 2 and as in Table 2 for ¢ = 3.

Table 1

M R VI X e e RN

4 0 12 0 0 0 1

1 6 2 9 0 2 0

4 3 4 3 6 0 0

4 6 0 3 6 4 0

7 3 1 0 9 1 2

4 9 0 0 0 12 1

13 0 0 0 0 0 13

Table 2

ob) @i oy % % iy o) o R
13 0 39 0 0 0 1
4 18 2 36 0 2 0
13 9 4 3 27 6 0 0
10 15 0 10 15 15 0 0 0
16 12 0 0 12 12 16 0 0
13 18 0 3 0 27 6 4 0
22 9 1 0 0 36 1 2
13 27 0 0 0 0 39 1
40 0 0 0 0 0 0 40
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For t > 2 we set
At_ = {(etfl) 0)7 (925*2’ 2'32&71)5 (etfla 2'32&71)5 (01/,1 +3t71) 3t71); (etfla 3t)) (925) O)}
It is known that A; is included in A; for all £ > 2 ([8]).

Lemma 2.4. ([8]). Fort > 2, the spectrum corresponding to each
diversity in A, is uniquely determined as follows:

(1) (), 0rc) o) = (0 = 1,1) for (¢, ") = (6p-1,0);

(2) (Cg? 270565? 3,2:3t— 2,C gi) 2,3t— 1) (27925 - 91) ) fO’f' (QOO )Spgt)) = (0t7252 : 3t_1);

(3) (Cg? 323t 2)03? 2231& 25 gi) 2+3t 23t 2) gi) 3t—1) — (37925 - 925674) fO’f’ (SO((]t)f

(t)) (et—l 9. 3t— 1)
(4) (Cet 2,00 g? p43t-2,30-2 C é?ggt 17059? 0) = (L0 —61,1,2) for (e, My =
(01— 1+3t L3t=hy;
(5) (ch gt e ol )= -1 for (A0 60) = (01,3);
(6) Cet 0 =0t for (@, ") = (6:,0).

Set A" = A; \ A;. The diversities in A" and the corresponding spectra
for t > 4 are determined as follows.

Lemma 2.5 ([10]). (1) When t is odd (> 5):

A = {01,371 U {01 = 375,01 + 7 + 1), (Br1 + 37150, —
Or+4s) | 0 < s <THU{(01-1,01—1 — Or4s), (01—1,00—1 + 045+ 1) | 1 < i < T},
where T = (t — 3)/2. The spectrum corresponding to each diversity is uniquely
determined as follows:

(t) _ (t) () _
(4- 1) —3TH1.0,_o4+07+1 Or1 =311, Cr2,00— 200 = 012,00 240 +1 = Or—1+
Or +1 f07’ (%), 80?)) = (04—1 — 3T, 0,1 + 0r + 1);

(t) (t) _ (t) _ T+1
(A 2) cﬁ’t 20.0i—2—07 — 012,00 o+0r+1 — 01 —0r, Cgt_2+3T+179t_2,9T =0;-1+3
for (¢ o) = (b1 + 371, 6,21 - 01);

t) t) t) t)
(A 3) (cét 207 ét 3231& 29 Cét7273t727 ét 2+3t 23t 2) (47 37 et _6276)

fO?" (900 7()0(1t)) - (et—173t 1);
(A 4) (t)

RO (t) — 9, —
Coy_,0,_ o0 s+l =04 12, +0r_5+1, CG 0 3THS Gy ot el 0; — 0;_o5 for

(o) = (Br—1 = 3THH5,60, 1 + 074 +1), 1< s <T;

_ _ qT+1-s () _
—o—3TH+1+5 0, o40p s+1 Or—1-25 =3 ’ Cet7276t72_6T+s -
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(t) N0 _ _ RO

(A-5) COr 20020745 — COr2,6i o0 +1 Or—1-25 — 07—, o, 2+3T+1+S,9t72—9T+s
_ T+1— s (t) ®y _

=0 1-2:+3 Cop_ ot 3T+ 00 0—0p 1y = 0 — O¢—a5 for (900 vp10) = (O—1 +

3T+l+s 9, 4 — 9T+s), 1<s<T;

(t) (t) _ _
(A_6) CGt 2,0t—2—014s — 925*23; Cet—2*3T+s79t—2+9T—1+s+1 - 6t72s 6T+1fs;

(t) )
Co,_o+3T+s.0, 5—0r_ 14s = Or—2s + 0115 + 1, €, s,

(w(ot), W(lt)) = (04—1,0t—1 —Or45), 1 <s<T;

Or—o—01_14s 0 — 9t+1—25 for

(®) _ _ (*) _
(4-7) Cop_y—3T+0, o4O 141 Or—2s — 01115, COr_o48T+5 0000 11y Or—2s +
(t) _ (t) _
Ori1-s + 1, COt—0,0i—2+0rys+1 — 0125, CO1—2,00—2+0r_116+1 01 — Orp1-25 for

() ") = (01 01 + 074 +1), 1< s <T.

(2) When t is even (> 4):
A = {(0:-1,3") U{(0r-1, 01— Ou1115), (011,01 +001115+1) | 0 <

s SUYU{(O—1 =3V 0,1 + Oy + 1), (01 + 3V T80, 1 — Opys) | 1 <
s<U+1},

where U = (t —4)/2. The spectrum corresponding to each diversity is uniquely
determined as follows:

() (t) _
(B-1) COr—2,00—2—0u 41 =01, c —3U+1.0; 240y +1 = 01—1 — Ou+1,

c((%i)_2+3U+1,9t_279U Or—1 + 9U+1 + 1 for (‘Po)’ Sﬂgt)) = (0i—1,0i-1 — Ou41);

(®) _ (t) _
(B-2) 0,3 —3U+1,6,_a+0y+1 =01 — Oy, 0r_24+3U+1,0_2—0y 01+ 0u1 + 1,
(t)

t
ét) 2,0t—2+0u41+1 T =01 fO?” (900 »P1 ) - (et—lvet—l + 6U+1 + 1);

t t t
(B 3) (Cét) 2, 0’ Cét) 372,3t—2) Cét)_2,3t_2’ Cét)_2+3t—273t—2) = (47 3; 01‘, - 02)6)

for (o, ) = (6,-1,371);

(B-4) cff

N0 () -0, —
9t 2791& 2+9U+s+1 Ht—Zs +0U+1—5 + 1, cat—2—3U+S,9t72+9U71+s+1 = Ht 0,5.;,.1_25 fO?"

o), it )_(gt—l_3U+1+876t—1+0U+5+1), 1<s<U+1;

(B-5) cf e =0y 05— 0
9z 2,0i—2—0u1s  COr_2,0i ot0y +1 — Ut=2s Utl-s;,
&

. 3U+2—5’ C(t) _

_3U+1+S=6t—2+9U+s+1 = 61,—28 9,5_2,91_279[]_*_3 e

(t) — 0,y +3UT2, (t)

9t 2+3U+1+5 Ot—2—0u+s C0r_ 430456, 5—00 14 = 01— 01125 for

<Po ,<P1 ) = (01 + 3V 0,1 —Opys), 1<s<U+1;
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() _ (®) _ _
(B-6) €O, 2,01 2—0u414s Or—1-2s, COp_p—3U+1450, 510y, +1 Oi—1-2s — Out1-s,
(t) _ (t) _
Cor_a+3U+145.0, 06y, Or—1-25 + Ouy1-s + 1, Cor 2002015 — O — Or—25 for

(<P(()t)7<P(1t)) = (04—1,0t—1 —Ou+14s), 1 <s<U;

®) — _ (t) —
(3‘7) CGz—2*3U+1+S,9t—2+9U+s+1_ Ot—1-25 ‘9U+1757 Cgt_2+3U+1+s79t_2,9U+s— Or—1-2s

(t) _ (t) _
+ 0u1-s + 1, CO1—2,0—2+0y1145+1 Or-1-2s, CO1—2,00—2+0u 1 s+1 — Or — 0125 for

(goét),sagt)) = (0t-1,0t-1 +Oys14s +1), 1 <s<U.

3. Characterizations of (¢,j); flats in X*. Let II be a t-flat in
¥*. An s-flat S in II is called the azis of IT of type (a,b) if every hyperplane of
IT not containing S has the same diversity (a,b) and if there is no hyperplane of
IT through S whose diversity is (a,b). Then the spectrum of IT satisfies c(% =
0; — 6;_1_5 and the axis is unique if it exists. The axis is helpful to characterize
the geometrical structure of II.

The geometrical structure of II whose diversity is in A, can be seen as
the following lemma by means of the axis of II. As for the type (3) of Lemma

2.4 for t =2, see [§].

Lemma 3.1 ([9]). Let II be a t-flat in X*.
(1) For (i,j) = (0;-1,0) or (6;—1,3"), t > 2, 11 is an (i,5); flat if and only if 11
contains a (6;—1,0)¢—1 flat which is the axis of type ((i —1)/3,7/3).
(2) For (i,j) = (04—2,2-3"71) or (0,—1 +3"71,371), ¢t > 2, I is an (i,5); flat if
and only if II contains a (0;—2,0);_2 flat which is the axis of type ((i —1)/3,7/3).
(3) For (i,5) = (0;-1,3"Y) or (6;-1,2-3""1), ¢t > 3, Il is an (i,); flat if and only
if IT contains a (0¢—3,0);—3 flat which is the axis of type ((i —1)/3,5/3).

Lemma 3.2. Let I be a 4-flat in ¥* and let (i,7) € {(31,45), (49,36)}.
Then 11 is an (i,7)4 flat if and only if I contains a point of Fy which is the axis

of type ((i —1)/3,37/3).

Proof. We prove only for (i,j) = (31,45). One can prove it for (i,j) =
(49,36) in a similar way.

“only if” part: Assume that II is a (31,45), flat. By Lemma 2.5 (B-4),
the spectrum of II is (cfﬁS, 0%)79, 0%)715, 0%)718) =(10,15,81,15). There are exactly
two (13,9)-solids 71, 12 and two (13, 18)-solids 73, m4 through a fixed (7, 3)-plane
d. From (3) of Lemma 3.1, a (13,9)-solid contains a point of Fy which is the
axis of type (4,3), and a (13, 18)-solid contains a point of Fjy which is the axis of
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type (4,6). Since § contains a point P of Fy which is the axis of type (2,1) by
(2) of Lemma 3.1, the axis of 7; (1 < i < 4) coincides with P. Let A be a solid
not containing P. A meets m,m2 in a (4,3)-plane and 73,74 in a (4, 6)-plane.
Therefore A is just a (10,15)-solid. There is no (10, 15)-solid through P since
C%)JS = 81. Hence P is the axis of II of type (10, 15).

“if” part: Assume that a 4-flat I contains a point P of F{y which is the
axis of type (10,15). From the definition of the axis, all the 4-flats not containing
P are (10,15)-solids. Hence the number of (10,15)-solids is at least 81. Thus II
is just a (31,45)4 flat. O

Lemma 3.3. Let Il be a 5-flat in ¥*, and let (i,7) € {(121,108), (121,
135)}. Then IT is an (i,7)s flat if and only if I contains a point of Fy which is
the axis of type ((i —1)/3,7/3).

Proof. We prove this only for (i,j) = (121,108). The other case is
proved similarly.

“only if” part: Assume that II is a (121,108)5 flat. By Lemma 2.5 (A-
6), the spectrum of IT is (051%)27, cg)%,cfg)%, 052)36) = (40, 36,243,45). There are
exactly two (31,45), flats 7r71,7r2 and two (49,36)4 flats 73, m4 through a fixed
(13,18)-solid 6. From Lemma 3.2, a (31,45)4 flat contains a point of Fy which
is the axis of type (10,15), and a (49,36)4 flat contains a point of Fj which is
the axis of type (16,12). Since § contains a point P of F{y which is the axis of
type (4,6) by (3) of Lemma 3.1, the axis of m; (1 < i < 4) coincides with P.
Indeed, any solid A in m; not containing P is a (10,15)-solid, for AN¢ is a
(4,6)-plane and there is exactly one (13, 18)-solid through a fixed (4, 6)-plane in
m1. Let 7 be a 4-flat not containing P. m meets 71,72 in a (10, 15)-solid and
73,y in a (16, 12)-solid. Therefore 7 is just a (40, 36)4 flat. There is no (40, 36)4
flat through P since 04(1%)36 = 324. Hence P is the axis of II of type (40,36). The
“if” part is similar to the one in Lemma 3.2. O

Lemma 3.4. (1) Let II be a t-flat in X* with even t > 4, and let (i,7) €
{(Ht_l - 3U+1+S,(9t_1 + 0u4s+ 1), (9,5_1 + 3U+1+S,(9t_1 — 0U+s) ‘ 1<s<U+ 1},
U= (t—4)/2. ThenII is an (i,7): flat if and only if I contains a (025—2,0)2s—2
flat which is the azis of type ((i —1)/3,5/3).
(2) Let IT be a t-flat in X* with odd t > 5, and let (i,j) € {(0¢—1,01—1 —
Or4s), (01—1,0i-1 + 0745+ 1) | 1 < s < T}, T = (t—3)/2. Then II is an
(i,4)¢ flat if and only if I contains a (025—2,0)2s—2 flat which is the azis of type

((1=1)/3,3/3).
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Proof. We prove this only for (8;_1 — 3V+15 6, | + 0y + 1); flat of
(1) and for (6;—1,0¢—1 — O745)¢ flat of (2). The other cases are proved similarly.

“only if” part: We prove this part by induction on t (> 4). First, (1) holds for
t =4 and (2) holds for ¢t = 5. Next, we assume (1) for ¢ — 1 and (2) for ¢t — 2 to
prove (2) for t.

Claim 1. Let m be a (i,5);—1 flat in ¥* with ¢ > 5, and let (i,5) €
{(et_g — 3T+s’ Oi_o + 0T—1+s + 1), (9,5_2 + 3T+s’ Oi_o — 0T—1+s)}- Then the axis
of 7 coincides with the axis of a (0;_3,0;—3 4+ 0p_14+s + 1);—2 flat in 7.

To see Claim 1, let 7 be a (0;_o — 3775, 0; o + 07 1,5+ 1);_1 flat. The
(t=1)

spectrum of 7 is (c(t_l) D c
0r—3—3T+5,0i_g+0p_14s+17 “0:-3,0t3—01 1157 “0t—3,0t_3+07_14+1
(t-1)

bo 53T 145 00 s t0pgrot1) = (Or1mas = 3TT17% 0y og + 07 s + 1, 0120 +
Or_s+1, 0;—1—0;_25) by Lemma 2.5 (B-4) for t—1. From the induction hypothesis
fort—2,a (04—3,0;—3+07_1+s+1);—2 flat A contains a (f25—2,0)2s—2 flat o which
is the axis of type (04—4,01—4+ 07215+ 1). A (t —3)-flat in A not containing w
isa (0y—4,0r-4+07r_9.5+1);3 flat, say 6. A (t—2)-flat A’ in 7 containing ¢ is a
(01—3,0¢—3+07_145+1)—2 flat or a (6,5 —37~1F%, 0, _3+07_o4s+1),_5 flat by the
spectrum of . However, there is only one (6;_3,0;_3+07_145+1);—2 flat through
a fixed (0;_4,0;_4 + 01 2,5 +1);_3 flat. So A is just a (6;_3 — 37715 0, 5 +
Or_o4s + 1);—o flat. Since the number of (¢ — 3)-flats in A not containing cw is
;5 — 0;_2s_ 1, the number of (0;_3 — 377145 0, 35+ 07 oy, + 1);_» flats in 7
not containing w is #;_1 — 6;_95. From the spectrum of 7 and the definition of
the axis, the axis w of A coincides with the axis of 7. Similarly, the axis of a
(0¢—3,0;_3 + Op_145 + 1);_o flat coincides with the axis of a (8;_o + 3715 6,5 —
Or—14s)i—1 flat.

For t > 7, assume that ITis a (041, 0;—1 — 0745)¢ flat. From the spectrum
of TI (see Lemma 2.5 (A-6)), there are exactly two (0;_o — 375,60, o+ 07 1,1+
1);—1 flats 7}, 4 and two (0;—2 + 37750, — O7_144):—1 flats 7}, 7, through a
fixed (0;—3,0;—3 + 0p_145 + 1);—2 flat A’. By Claim 1, the axis of A’, say ¢,
coincides with the axes of 7j—). Let 7’ be a (¢t — 1)-flat not containing §’. Since
7/ meets 7, m in a (B3 — 3T 1T 0, 3+ O o, + 1);_2 flat and 73,74 in a
(01— + 317145 0,5 — Op_o1s)i—o flat, 7' is just a (04—o,0i_o — Op_145)i—1 flat.
Hence II contains a (62s—2,0)2s—2 flat which is the axis of type ((: — 1)/3,/3).

Finally, we assume (2) for ¢t — 1 and (1) for ¢t — 2 to prove (1) for ¢.

Claim 2. Let m be a (i,5);—1 flat in ¥* with ¢ > 5, and let (i,5) €
{(01—2,01—2 — Oyys), (01—2,0,—2 + Oy+s + 1)}. Then the axis of m coincides with
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the axis of a (f;_3 +3V"%,0; 3 — O7_1,)¢_o flat in .
This claim is proved similarly to Claim 1.

For t > 6, assume that ITis a (6;_; — 3V 0, | + 0y +1); flat. From
the spectrum of II (see Lemma 2.5 (B-4)), there are exactly two (6;—2,6;—o —
Ov+s)i—1 fats ), w5 and two (0;—2, 0r—2 + 0y 45+ 1)1 flats 75, 7 through a fixed
(0;_3+3Y%% 0, _3—07_1,4)s_2 flat A’. By Claim 2, the axis of A/, say &', coincides
with the axes of m}—7). Let 7’ be a (¢t — 1)-flat not containing §’. Since 7’ meets
7Ti, 7Té ina (Qt_g, Or_3— 0U+s—1)t—2 flat and Wé, 7Tfl in a (9,5_3, Or—3+0y4s—1+ 1)t—2
flat, 7 is just a (6;_o — 3Y+5. 0, o + Oy s 1 + 1);_1 flat. Hence II contains a
(025—2,0)25_2 flat which is the axis of type ((i —1)/3,7/3).

“if” part: We prove only for the axis of type (0o —3Y"% 0; o+ 0y, 1+
1) of (1). The others are proved similarly. Assume that a ¢-flat IT contains a
(B2s_2,0)25_o flat § which is the axis of type (6;_o — 3V, 0, o + 0y s_1 + 1).
From the definition of the axis, all the (¢ — 1)-flats not containing § are (fy—o —
3UFS 0y _o+0y4s_1+1)s_1 flats. Hence the number of (6;_o—3Y+%,0;_o+0y4 51+
1);_1 flats are at least §; —0;_o5. Thus IT is just a (6;_1 —3VF1H5 0, 1 + 0y s+1);
flat by Lemma 2.5. O

Lemma 3.5. (1) Let II be a t-flat in * with even t > 4, and let (i,j) €
{(01=1,01—1 — Oy1s), (0r—1,01 +0y1s+1) | 1 <s<U} U= (t—4)/2. ThenlIl
is an (i,7): flat if and only if I contains a (025-1,0)25—1 flat which is the azis of
type ((i —1)/3,35/3).

(2) Let 11 be a t-flat in X% with odd t > 5, and let (i,7) € {(0;—1 — 3T+ 0, 1 +
Orys+ 1), (01 +3TH1F50, 1 —07,.) | 1<s<T}, T=(t—3)/2. ThenIl is

n (i,5)¢ flat if and only if 11 contains a (025—1,0)2s—1 flat which is the azis of
type ((i —1)/3,35/3).

The above lemma can be proved similarly to Lemma 3.4.

Lemma 3.6. (1) LetII be a t-flat in ¥* with event > 4 and U = (t—4)/2.
Then 11 is a (04—1,0i—1 — Ou+1)e flat if and only if 11 contains four (t — 1)-flats
1, , 74 through a fized (0y—3,0;—3 — Oyi1)i—2 flat A such that A contains a
(4,0)-line | = { Py, Py, P3, Py} which is the axis of type (01—4,0;—4 — Oy) and that
P; is the axis of m; of type (04—3,0,—3 — Oy) for 1 <i < 4.
(2) For a t-flat II in X* with odd t > 5 and T = (t — 3)/2, Il is a (04—1 +
3T+ 0, 1 — 07); flat if and only if I1 contains four (t — 1)-flats 7y - - - w4 through
a fived (033 +3T+1,0,_3 — O7);_o flat A such that A contains a (4,0)-line | =
{Py, Py, P3, Py} which is the axis of type (0;_4 + 37,04 — O7_1) and that P; is
the axis of m; of type (0;_3 + 37,0, 3 —O0p_1) for 1 <i <4,
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Proof. “only if” part: We prove this part by induction on ¢ > 4. Assume
that II is a (49,36)4 flat. The spectrum of II is (0%)79, 0%)715,0%)712) = (40, 36,45)
from Lemma 2.5 (A-1). There are exactly four (13,9)-solids 7y, --- ,m4 through
a fixed (4,0)-plane A in IT. A (13,9)-solid contains a point P; € Fj which is the
axis of type (4,3) by (3) of Lemma 3.1. And a (4,0)-plane contains a (4, 0)-line [
which is the axis of type (1,0) by (1) of Lemma 3.1. Therefore the axis P; € Fy of
m; is on . Suppose P; = P5. Then there are two (1,6)-planes A C 71, Ay C 7o
through a fixed (1,0)-line I’ C A containing P (= P5). m = (A1, Ag) is a (13,9)-
solid or a (10, 15)-solid since a (16,12)-solid contains no (1,6)-plane from Table
2. In a (10,15)-solid, there is only one (1,6)-plane through a fixed (1,0)-line,
so m is not a (10,15)-solid. If 7 is a (13,9)-solid, then two (13,9)-solids meet
in a (1,6)-plane in II. However there is only one (13,9)-solid through a fixed
(1,6)-plane in II, a contradiction. So P; # P, and (1) holds for ¢t = 4.

Next, we assume (1) for ¢t — 1 to prove (2). For ¢ > 5, assume that IT is
a (0;_1 + 371 0, 1 — Or); flat. By the spectrum of II (see Lemma 2.5 (A-1))
there are exactly four (0;_o + 3771 0; o — 07);_1 flats 7y, --- , 74 through a fixed
(0;_3 + 3T+ 0, 3 — O07);_o flat A. m; contains a point P; € Fy which is the
axis of type (6;_3 +37,0;_3 — Or_1) by (1) of Lemma 3.4. And A contains a
(4,0)-line [ which is the axis of type (6;_4 +37,0;_4 —07_1) by (2) of Lemma 3.5.
Therefore the axis P; € Fy of m; is on [. Suppose P; = P,. Then there are two
(thg, Op_3— QT)t,Q flats Ay C 71, Ay C 7o through a fixed ((915,4 + 3T_1+8, Or_4—
Or_2+s)i—3 flat containing Py in A. (A1,Ag) = wis a (0y—2,0;—2 — O7)—1 flat
or a (0;_o + 371 0; 5 — O7);_1 flat since a (0y_2,0; o + 07 + 1);_1 flat has no
(0y—3,01—3 — O7)1—o flat. If w is a (04—2,0:—2 — O7);—1 flat, then the axes of two
such (0;—3,60;—3 — 071);—2 flats do not coincide from the induction hypothesis for
t — 1, a contradiction. If 7 is a (0;_o + 371, 0;_5 — 67);_1 flat, then there is only
one (0;_3,0;_3 —07);_o flat through a fixed (6;_4+ 3715 0; 4 —Op_o,4)s 3 flat
in II, a contradiction. So P; # P», and our assertion follows.

For ¢t — 1, we assume (2) to prove (1). For t > 6, assume that II
is a (0i—1,0,—1 — Oy+1): flat. From Lemma 2.5 (B-1), there are exactly four
(Gt,g, 915,2 — 9U+1)t71 flats T, ,T4 through a fixed ((915,3, (91/73 — 0U+1)t72 flat
A. m; contains a point P; € Fy which is the axis of type (0;—3,0i—3 — 0y)
by (2) of Lemma 3.4. And A contains a (4,0)-line [ which is the axis of type
(0y—4,0,—4 — O0y) by (1) of Lemma 3.5. Therefore the axis P; € Fy of m; is on [
for 1 <i < 4. Suppose P; = P,. Then there are two (6;—3 + 3UFL g, 5 — 0 )i—2
flats Ay C 71, Ao C 7y through a fixed (04—4,60;—4 — 0y )—3 flat containing P; in
A. <A1, A2> =misa (0t72"9t72 — 0U+1)t71 flat or a (0t72 + 3U+1,(9t72 — HU)tfl
flat since (6;_o — 3VT1,0; 5 + 0y41):—1 flat has no (f;_3 + 3V 0,5 — Op)s_o
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flat. If wis a (f;_o + 3V*1,0;_9 — 0y7);_1 flat, then the axes of such two (6;_3 +
U+ g, 5 — 0r7)¢—2 flats do not coincide from the induction hypothesis for ¢ — 1,
a contradiction. If 7 is a (f;—92,0;—2 — Oy41)i—1 flat, then there is only one
(0;_3+3U+L 0, 3 —0p)s_o flat through a fixed (0;_4,0;_4 — 0y)_3 flat, a contra-
diction. So P; # P,, and our assertion follows.

“f” part: Let II be a ¢-flat in ¥* with even ¢ > 4 and U = (¢t — 4)/2.
Assume that IT contains four (¢t — 1)-flats mq, -+, m4 through a fixed (0;_3,0;_3 —
O +1)t—2 flat A such that A contains a (4,0)-line | = {Py, P5, P3, P} which is the
axis of type (0;_4,60;—4 —0y7) and that P; is the axis of m; of type (0;_3,0;_35— 0y ).
From (1) of Lemma 3.5, a (¢t — 1)-flat containing a point P; € Fj which the axis
of type (04—3,0;—3 — 0y) is a (04_2,0;—9 — Oy 41)i—1 flat, say m;. Since there are
four (6;—9,0;—2 — O+1)1—1 flats through a fixed (0;_3,0;—3 — Oy11)i—o flat, II is
just a (04—1,60;—1 — Oy41); flat. The other cases are proved similarly. O

The following lemma can be proved similarly to Lemma 3.6.

Lemma 3.7. (1) Let II be a t-flat in ¥* with event >4, U = (t —4)/2.
Then Il is a (04—1,01—1+0u41+ 1) flat if and only if I1 contains four (t —1)-flats
1, ,m4 through a fized (043,03 + Oys1 + 1)i—2 flat A such that A contains
a (4,0)-line | = {Py, Py, P3, Py} which is the axis of type (04—4,01—4+ 0y +1) and
that P; is the azis of m; of type (01—3,0;—3+ 0y + 1) for 1 <i <A4.
(2) Let II be a t-flat in ¥* with odd t > 5, T = (t — 3)/2. Then I is a (04—1 —
3THL 0, 1 + 0 + 1); flat if and only if 11 contains four (t — 1)-flats 7y, - , 74
through a fized (0;_3—3T1 0, _3+07+1);_o flat A such that A contains a (4,0)-
line | = {Py, Py, P3, P} which is the azis of type (044 —37,0; 4+ 07 1+ 1) and
that P; is the axis of m; of type (0;_3 — 37,0, 34+ 07 1 +1) for 1 <i<4.

4. Main Results. In this section, we give the geometric conditions and
the main theorems on the extendability of ternary linear codes. For k > 4, let
(C-0), (Cg-1) and (Cg-2) be the following conditions:

(Ck-0) there exists a (0x_4,0)x_3 flat 41 in X* satisfying d; \ Fo C F,

(Ck-1) there is a (k — 2)-flat IT with IT\ F' C F, containing a (0y_4,0);_4 flat L
such that L is the axis of IT of type (05_4 + 374, 384).

(C-2) there is a (k — 2)-flat II with IT\ F' C F, containing a (6x—4,0);_4 flat L
such that L is the axis of II of type (fx_5,2 - 3*™%).
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We denote by (x1, X2, ) the smallest flat containing subsets x1, x2, - - -
of ¥*. For k = 4 we consider two more conditions:

(C4-3) there are three non-collinear points Ri, Ro, R3 € F, such that the three
lines (R1, Ra), (Ra, Rs), (Rs, Ry) are (0, 2)-lines,

(C4-4) there are three non-collinear points Q1,Q2, Q3 € Fi such that the three
lines (Q1,Q2), (Q2,Q3), (Q3, Q1) are (0,2)-lines each of which contains two
points of F.

For k > 5, let (Cg-3) and (Cg-4) be the following conditions:

(Cg-3) there is a (k — 2)-flat II with IT\ F' C F, containing a (6x—_5,0),_5 flat L
such that L is the axis of II of type (0x_4,2 - 3¥7%).

(Cr-4) there is a (k — 2)-flat II with IT\ F' C F, containing a (x_5,0),_5 flat L
such that L is the axis of IT of type (05_4,35™%).

For k = 5 we consider two more conditions:

(Cs-5) there exist a (4,0)-line I and four skew (1,0)-lines ly,ls,[3,l4 such that
each of ly,...,l4 meets | and that (l1,l2,13,l4) € Fi and (UL ,l;) \ I C F,
hold,

(C5-6) there exist a (2, 1)-line [y containing two points P;, P, € Fy and two (1,0)-
lines 11,1y (resp. I,1}) through P; (resp. P») such that I = (I1,12) N (17, 15)
and m; = (Qo, ;) are (0,2)-lines for i = 1,2, where lp N F; = {Qo},
INFy ={Q1,Q2} and that (U2, (l; UlLUm;))\ F C F, holds.

Lemma 4.1 ([11]). Let A be a solid in ¥*.
(1) A is a (10,15)-solid with A\ F C Fe if and only if A satisfies (C5-6).
(2) Ais a (16,12)-solid with A\ F C F, if and only if A satisfies (Cs-5).

We define the conditions (Cp-5-Cg-10) for even k > 6 and 1 < s < T =
(k —4)/2 as the existence of a (k — 2)-flat IT with I1 \ F' € F, satisfying the
following conditions, respectively.

(Ck-5) II contains a (025_2,0)25—2 flat which is the axis of II of type (0x_4 —
3T Oy 4 Ors—0+ 1) .

(Cg-6) II contains a (62s—2,0)2s—o flat which is the axis of II of type (0x_4 +
3= 0,y — O745_2).
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(Cg-7) II contains a (6251, 0)2s—1 flat which is the axis of II of type (0x_4, Ok—14—
Or1s-1).

(Ci-8) II contains (Aa5_1,0)25—1 flat which is the axis of II of type (04, 0k—4 +
‘9T+sfl + 1)

(Cg-9) II contains four (k—3)-flats 71, - - - , w4 through a fixed (05, 0x—5—07)k—4
flat A such that A contains a (4,0)-line | = {P, Py, P3, P;} which is the
axis of A of type (0x_¢,0r_¢ — O7—1) and that P; is the axis of m; of type
(Ok—5,0k—5 —Or_1).

(Cg-10) II contains four (k—3)-flats 7y, - - , w4 through a fixed (0_5, 0x—5+ 07+
1)k—4 flat A such that A contains a (4,0)-line [ = { P, P», P3, P4} which is
the axis of A of type (0x_g,0k—¢ + 0r—1+ 1) and that P; is the axis of m; of
type (Ox—s5, 05+ 071+ 1).

We define the conditions (Cg-5) — (Cy-10) forodd k > 7and 1 < s < U+1
where U = (k—5)/2 as the existence of a (k—2)-flat II with IT\ F' € F, satisfying
the following conditions, respectively.

(Ck-5) II contains a (025—1,0)2s—1 flat which is the axis of II of type (0x_4 —
3UFS Oy + Ougs—1 + 1).

(Cg-6) II contains a (62s—1,0)2s—1 flat which is the axis of II of type (0x_4 +
3UFS s — Ougs—1).

(Cg-7) II contains a (0252, 0)2s—2 flat which is the axis of I of type (0x_4, 04—
‘9U+sfl)'

(Cg-8) II contains a (f25—2,0)2s—o flat which is the axis of II of type (0x_q4, Ok—a+
9U+5_1 + 1).

(C-9) II contains four (k — 3)-flats 7y, - -- , 74 through a fixed (0_5—3Y*1, 05 _5
+ 0y + 1)g—4 flat A such that A contains a (4,0)-line [ = {Py, P», P3, Py}
which is the axis of A of type (0r_g —3Y,0r_¢ + 0y_1 + 1) and that P; is
the axis of 7; of type (05 — 3V, 0p_5 + Op_1 + 1).

(Cg-10) II contains four (k—3)-flats 7y, - - - , m4 through a fixed (6_5+3V*1, 0;_5
— 0y )i—4 flat A such that A contains a (4,0)-line [ = { Py, P2, P3, Py} which
is the axis of A of type (0_g + 3Y,0x_¢ — Oy_1) and that P; is the axis of
m; of type (r—5+3Y,0k_5 — Ou_1).



Conditions for the Extendability of Ternary Linear Codes 345

Let C be an [n, k,d]3 code with diversity (®¢,®1) € D}, d =1 or 2 (mod
3), k > 3. Since D = {(4,3)}, Df = {(13,9),(10,15), (16,12)} and D} = A} |
for £ > 5 ([8], [10]), we have |Dy| = 2k — 1 for all £ > 3. It is known that an
[n,4,d]3 code with diversity (®o,®;) € D} is not extendable if ®, < 3 for k = 4
([8]). The conditions (C4-0-Cy4-4) are used to check the extendability of [n,4,d|s
codes.

Theorem 4.2 ([10]). Let C be an [n,4,d]s code with diversity (®o, P1) €
Djf, gcd(3,d) = 1. Then C is extendable if and only if one of the conditions
indicated in Table 3 holds.

Table 3
(Do, D1) conditions
(13,9) (Cys-1), (Cy-4)
(10,15)  (C4-2), (C4-3), (Cy-4)
(16,12) (C4-0), (C4-3)

For the case when k = 5, C' is not extendable if &, < 9 when (®g, P;1) #
(40, 36) or if &, < 12 when (P, 1) = (40,36) ([8]). Otherwise, we need to check
whether one of the conditions (C5-0-C5-6) holds or not according to the diversity
of C.

Theorem 4.3 ([11]). Let C be an [n,5,d]s code with diversity (®o, P1) €
D;r, gcd(3,d) = 1. Then C is extendable if and only if one of the conditions
indicated in Table 4 holds.

Table 4
(Po, 1) conditions
(40,27) (Cs-1), (C5-4)
(31,45)  (Cs-2), (C5-3), (C5-4), (C5-6)
(1036)  (Cod). (C5). (Cr6)
(40,45) (Cs-3), (C5-5), (C5-6)
(1936)  (Cx0). (C3-3). (Cx5)

Theorem 4.4 ([9]). Let C be an [n, k, d]3 code with diversity (05_o,3%2),
gcd(3,d) = 1, k > 6. Then C is extendable if and only if either the conditions
(Ck-1) or (Cp-4) holds.
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Theorem 4.5. Let C be an [n,k,d]s code with diversity (®g, P1) € D,j,
gcd(3,d) =1 for k> 6. Then C is extendable if and only if one of the conditions
indicated in Table 5 holds.

Table 5

(Po, P1) k : even (®o, @1) k:odd conditions
(O—2 — 3T+ 0y o + 01 + 1) (Ok—2,0k—2 — Oy 41) (Ck-5), (Ck-9), (Ck-10)
(Or—o 4+ 37T 0o — O7) (Ok—2,0k—2+O0uy1+1) (Ck-6), (Ck-9), (Ck-10)
(Ok—2 =37 Op—o + 0r4s +1) (Or—2 — 3" Ok +0u1s +1) (Ci-5), (Cr-T7), (Ci-8)
(Or—z + 37T 0o — Or4s) (Or—2 + 3" 05 —Outs)  (Ci-6), (Ci-T), (Ci-8)
(Ok—2,0k—2 — Or+s) (Ok—2,0k—2 — OUtst1) (Ck-5), (Ck-6), (Ck-7)
(Or—2,0k—2+ 0115+ 1) (Or—2,0k—2+0urs11+1) (C-5), (Ci-6), (Cg-8)

(T,U and s are defined as in Lemma 2.5)

Proof. We prove this only for (®g, ®1) = (0x_o — 371,040 + 07 + 1)
of Theorem 4.5. The others are proved similarly. Let C be an [n,k,d]s code
with diversity (0y_o — 37+, 0o + 0r + 1), ged(3,d) = 1, even k > 6 where
T=(k—4)/2.

“only if” part: Assume that C' is extendable. Then there is an (i,7)-
hyperplane II satisfying I\ F' C F,, where (i,5) € {(0p_3 — 3T, 0p_5 + 07 +
1), (9]{,3, 9].673—(97“), (9]9,3, (9]{,3+9T+1)}. IfIlis a (9]{,3—3T+1, 0]@73“’_6’1“’_1)]{72
flat, then (Cg-5) holds with s = 1 by (2) of Lemma 3.5. If Il is a (0j_3,0k_3 —
Or)k—o flat, then (Cg-9) holds by (1) of Lemma 3.6. If IT is a (0x_3,0x_3 + 07 +
1)k—2 flat, then (Cg-10) holds by (1) of Lemma 3.7.

“if” part: Assume that one of the conditions (Cg-5), (Cg-9), (Cg-10)
holds. From the definition of conditions (Cg-5-Cy-10), there exists a (k — 2)-flat
IT with IT\ F' € Fe. Hence C is extendable by Lemma 2.3. O

Example. Let C be a [14,5, 7|3 code with a generator matrix
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whose weight distribution is
0'7328%0964102%11%0121913"2 (diversity(40,45), ®e = 9).
Take four points P, Q1,Q2,Qs in ¥ = PG(4,3) as
P=(1,0,0,0,2),Q; = (0,1,1,1,0),Q2 = (0,1,2,2,2),Q3 = (0,1,2,1,1).

Since wt(P - G) = 0 (mod 3), wt(Q; - G) = 1 (mod 3) and wt(Q; - G) # 7,
we have P € Fy and Q1,Q2,Q3 € F,. One can easily see that §; = (P,Q1),
d2 = (P,Q2), 03 = (P,Q3) are (1,0)-lines. It also turns out that the three
lines (Q1,Q2), (Q1,Q3), (Q2,Q3) are (0,2)-lines, and that all of the planes not
containing P are (4,6)-planes. Thus, P is the axis of type (4,6), that is, (Cs-
3) of Theorem 4.3 holds. Hence C is extendable. The solid (P,Q1,Q2,Q3) is
represented as the variety V(f) with f = x¢+2x; + 222+ 2x3 4+ x4. Hence we can
take h = (1,2,2,2,1)T so that [G,h] generates a [15,5,8]3 code, whose weight
distribution is 0186094010621120124013101410,
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