
Serdica J. Computing 2 (2008), 277–294

PATTERNS FOR ACTIVE E-LEARNING IN CMS

ENVIRONMENTS

Atanas Radenski

Abstract. The proliferation of course management systems (CMS) in the
last decade stimulated educators in establishing novel active e-learning prac-
tices. Only a few of these practices, however, have been systematically de-
scribed and published as pedagogic patterns. The lack of formal patterns
is an obstacle to the systematic reuse of beneficial active e-learning experi-
ences. This paper aims to partially fill the void by offering a collection of
active e-learning patterns that are derived from our continuous course de-
sign experience in standard CMS environments, such as Moodle and Black-
board. Our technical focus is on active e-learning patterns that can boost
student interest in computing-related fields and increase student enrolment
in computing-related courses. Members of the international e-learning com-
munity can benefit from active e-learning patterns by applying them in the
design of new CMS-based courses – in computing and other technical fields.

ACM Computing Classification System (1998): K.3.2.
Key words: Course management systems; active learning; pedagogical patterns.



278 Atanas Radenski

1. Introduction.

1.1. Objective. In computer science, the purpose of a pattern is to
capture, disseminate, and promote successful practice in some domain, such as
software design, human-computer interaction, and pedagogy. Pedagogical pat-
terns in particular capture successful experience in the practice of course design
and delivery.

During the last four years, we have created digital study packs that
promote computer-supported active learning through experimentation and self-
discovery. These online study packs have been employed in core computer science
courses taught at Chapman University in California USA.

Positive student feedback from students and increased enrolment are a
testimony for the success of our active e-learning packs [20, 26]. The technical

objective of this publication is to present a collection of active e-learning pat-
terns in CMS environments. This pattern collection is founded on our online
study pack design and delivery experience and the experience of instructors who
have adopted and used the author’s online study packs. While we recognize that
active e-learning patterns can be based on a wide variety of online and offline
software tools, our focus is exclusively on patterns that work in standard CMS en-
vironments, because of their wide proliferation and also because our long-lasting
experience is mainly with CMS.

1.2. Background Work and Experience. Active e-learning in com-
puting courses has been in the focus of our teaching and research since 2004.
We have developed the following comprehensive online study packs to support
various lower and upper level undergraduate courses: Introduction to Comput-

ing with Python, Object-Oriented Computing with Java, Compiler Construction,

Programming Languages, Java Generics, and others. Our online study packs
have been published online on a dedicated server, studypack.com, and already
used in actual courses of study by over 600 hundred of learners in the US and
abroad at Chapman University in California USA, Columbus Sate University and
Berry College in Georgia USA, College of Southern Nevada USA, University of
Wisconsin Colleges USA, Sofia University in Bulgaria, the National University
of Lesotho, and elsewhere. The underlying active e-learning approaches have
been reported at selective professional meetings in the USA and Europe [20, 21].
This approach has already attracted interested computing faculty to a SIGCSE
2008 workshop, an ITiCSE 2008 demo, and to three annual workshops at Chap-
man University. We have already accumulated considerable experience with the
design and use of online study packs and this practical experience is the founda-



Patterns for Active E-learning in CMS Environments 279

tion of our proposed collection of synthesized, general-purpose patterns for active
e-learning.

1.3. Methodology Overview. Design patterns were originally intro-
duced in the 1970s as an architectural qualitative method by Christopher Alexan-
der and his colleagues [1]. In mid-1990s, Erich Gamma and others [11] successfully
adapted Alexander’s pattern methodology to the domain of computer software
design. We follow other educators [2] in the use a modernized version of the
qualitative Alexandrian method.

This publication presents the outcomes of two tasks: pattern identification
and pattern specification. Our pattern identification has been rooted in successful
- as testified by surveys and enrolment increase numbers – online study pack prac-
tices, such as interactive labs, non-interactive labs, online quizzes, e-texts, and
more. Our pattern specification is in the form of texts with uniform structure; we
use a modified Alexandrian pattern structure that has already been successfully
used in pedagogical pattern design [6, 19].

In our pedagogical pattern design, we follow recent guidelines [23] to find
a working balance between abstraction and concreteness and to design patterns
that serve as working tools – rather than general abstractions – for active e-
learning course design.

Our design is intentionally restricted to active e-learning patterns that
can be used in standard CMS environments – such as Moodle and Blackboard
– because of the growing use of such standard environments as opposed to more
exotic experimental systems, and because our own design and teaching experience
is predominantly with such standard CMS environments.

2. Related Work.

2.1.Pedagogical Patterns Overview. Since the mid 1990’s, patterns

have become a central theme in the computing community.
As of the time of writing of this publication, a Google Scholar advanced

search for publications on patterns and pattern languages in computer science,
engineering, and mathematics produces an impressive list of 9110 publications
which refer to pattern language(s) in their titles. Patterns have been in the
focus of well-established international conferences, such as the prestigious OOP-
SLA and ECOOP conferences, the specialized PLoP conferences (organized since
1994 and published in comprehensive volumes [15]), and a number of regional
conferences, such as EuroPLoP, KoalaPLoP, and VikingPLoP. Patterns related
to education are frequently in the program of ACM SIGCSE and ACM ITiCSE
conferences.



280 Atanas Radenski

The Hillside Group’s website [13] offers a useful collection of references
on software patterns, including hundreds of articles, papers, and a list of nearly
70 books on software patterns that are currently available on the book market.

The Pedagogical Patterns Project [19] has produced a broad collection of
pedagogical patterns [4, 5, 6, 7]. These general pedagogy patterns are focused
on more traditional classroom environments and are not particularly dedicated
to e-learning environments and techniques neither they address computer science
learning specifics. Except for some patterns that address the use of email in course
delivery, the PPP patterns do not particularly cover the e-learning domain.

Dearden and Finlay [10] offer a beneficial analysis of patterns and pattern
languages in general and also focus on patterns for human-computer interaction
in particular. A state of the art review of pedagogic patterns in computer science
is compiled in the recent technical report of the ITiCSE 2008 WG1 on Design

Patterns for Online Learning Environments in CS [25].

2.2. Active Learning Ideas and Practices. “Active learning styles
deviate from traditional lectures and reading and involve learning by doing (phys-
ical action) and by thinking about what has been done (mental action). Active
learning techniques are well supported by technology and are successfully applied
in both core and in advanced computing courses” [20]. Cooperative learning is
active learning in a group [16].

Roschelle et al. [24] summarize the benefits of the ancient active learn-
ing method offered by Socrates to his students. Active learning is characterized
by (1) learners’ active engagement, (2) a focus on knowledge construction, (3)
timely feedback and adaptive instruction, and (4) learning community formation.
The authors highlight the strengths of tablet PCs as active learning media, par-
ticularly through the use of platforms such as Classroom Presenter and Group
Scribbles.

Razmov and Anderson [22] describe positive active learning experiences
with tablet PCs in software engineering classes. In particular, the authors pro-
mote student submissions, “a style of interaction whereby the instructor poses a
question . . . on a tablet in front of each student” then students write in digital
ink their answers back to the instructor, possibly with immediate feedback from
the instructor. Student submissions help “engage all students, not only the vocal
ones”.

Budd [8] recalls another ancient active learning method, the one promoted
by Plato in his book Meno. In active learning, the role of the teacher is “not
only to present new information, but also to lead the student to understand
what it is they already know”. Budd describes a specific implementation, the



Patterns for Active E-learning in CMS Environments 281

daily worksheets, of this idea in his data structures course. The author reduces
traditional daily lectures to not more than 30 minutes in order to introduce a new
concept. Students then spend the rest of the class analyze code that implements
the concept, search textbook and other resources in order to fill answers into a
worksheet of questions and problems.

Radenski [20] claims that “students who grew up browsing the Web are
skilled in what is usually referred to as abduction, a reasoning process that starts
with a set of specific observations and then generates the best possible explanation
of those observations”. In order to exploit the abduction skills of contemporary
students, the author has developed digital CS1/2 study packs that promote and
support active learning through abduction, i.e., abductive learning.

Bailey and Forbes [3] stress the importance of interaction in active learn-
ing courses. The authors promote the feedback loop, a communication method
to create synergy between (1) web-enhanced out-of-class activities and (2) active
learning classroom activities. In brief, students complete web-based warm-up
assignments that prepare them for the upcoming lecture and lab. Warm-up sub-
missions guide the instructor for best in-class delivery. Finally, the feedback loop
is closed by online submissions of graded assessment exercises on material covered
in class.

Gonzalez [12] advocates active and cooperative learning style that goes
beyond mere course delivery to address management and assessment. The author
describes successful experience with cooperative CS1 learning that is character-
ized by positive interdependence and face to face interaction between students
and also by individual accountability.

According to Pollard and Duvall [18], it is beneficial to incorporate games
and prizes in undergraduate computer science courses. The authors advocate –
and present experience with – teaching techniques that are not computerized but
are in fact “reminiscent of kindergarten: games, toys, stories, and play”.

Valino [29] introduces active and cooperative learning techniques in soft-
ware design patterns course. The study of a particular group of related patterns
commences with a detailed list of learning objectives, continues with a set of
questions related to the patterns, and ends with a design and implementation
exercise.

2.3. Active E-Learning Patterns Overview. Patterns for active
learning have been published as early as in 1995. Anthony [2] offers simulation
games pattern and quiz games pattern as part of his general purpose patterns.
Later, Bergin and others [5, 6] have collected patterns for experimental learning
and patterns for active learning at various levels in various disciplines. These



282 Atanas Radenski

general patterns are focused on more traditional classroom environment and are
not particularly dedicated to e-learning environments and techniques neither they
address computer science learning specifics.

Warren [30] employs several active learning ideas to teach software pat-
terns in his software design course. A key idea is that “students should be able
to do design by making effective use of design patterns”. The author’s pattern

for teaching software patterns consists of these steps” (1) immerse students in a
real problem, (2) present code that solves the problem, (3) introduce a software
patterns that can in fact has been used in the solution design, (4) engage students
in applying the patterns on a new, small problem, and (5) reflect on the pattern.
This interesting pattern is not directly oriented to e-learning setting.

When it comes to patterns for (a) active learning in (b) e-learning settings,
we feel that there is a misfortunate void in the literature. To help at least partially
fill this void, this publication offers a collection of active e-learning patterns that
is specifically oriented towards digital course design and delivery – as supported
by standard CMS environments.

3. Collection of Active E-Learning Patterns.

3.1. Pattern Identification. Since 2001 we have used Blackboard to
develop, use, and experiment with eight digital courses at Chapman University.
Since 2004, we have developed an independent Moodle [9] installation for the same
purpose and hosted at studypack.com. This independent Moodle installation
has permitted the use of five new online courses by students and instructors from
outside Chapman University as well (see Section 1.2 for a partial list of users).

Our Blackboard and Moodle experiences have revealed a number of ben-
eficial e-learning practices that potentially can be formalized as pedagogical pat-
terns. These practices include the use of integrated online study packs, self-guided

interactive labs, self-guided programming labs, honor reports, multiple attempt

quizzes, digital textbooks – referred to as e-texts, email for assignment distrib-
ution and evaluation, forums for individualized assignment submission and dis-
cussion, glossaries for Q & A types of documents, and messaging for student
assistance and consultation. While all these are beneficial e-learning practices,
we chose to systematically specify only the first five as pedagogical patterns.
The five selected practices, such as self-guided labs for example, directly support
abductive learning, which is a beneficial active e-learning method [20]. Useful
practices that we have left outside of our pattern collection – such as email and
forum uses – are well known and their publication as patterns would not be a
significant contribution.



Patterns for Active E-learning in CMS Environments 283

3.2. Pattern Specification. This section offers patters that we have
discovered in our online study pack design and utilization (see Section 1.2 for
details). While our experience involves study packs for lower and upper level
courses, these particular patterns apply primarily in the context of introductory
computing courses. The patterns also apply, we believe, to introductory courses
outside of the computing field, particularly courses in which computer-based ex-
perimentation is plausible. These patterns are meant to be used in either hybrid
courses that combine structured class meetings with asynchronous web-based
learning, or in purely online courses.

Our patterns specifications consist of six sections: Context, Constraints

and Forces, Solution, Resulting Context, Utilization, and Related Patterns. Each
pattern begins with a brief Context section which formulates a pedagogic problem
(or problems) that the pattern can resolve. The Constraints and Forces section
of a pattern supplies detailed restatement of the problem(s) and helps determine
when to apply the pattern. The Solution section defines the pattern’s solution.
The Resulting Context section points to possible benefits of the pattern’s utiliza-
tion. The Possible Uses section points to plausible areas of application for this
pattern. The Related Patterns section, if present, may include references to other
patterns in this paper and/or patterns published by others.

3.2.1. Online Study Pack.

Problem:

How can you actively engage students who are restricted by their ex-
tremely busy work and study schedules?

Constraints and Forces:

In developed and developing countries alike, more and more full-time
undergraduate students now rely on paid work as their main or sole source of
income. Australian full-time undergraduate students, for example, work an av-
erage of around 15 hours per week, according to McInnis and Hartley [17], and
18% work 21 hours or more per week. Students engage in paid employment not
only to provide needed or desired income, but also to accumulate competitive
professional experience before their graduation. Apart from paid employment,
undergraduate students engage in overloaded course schedules for the purpose of
timely graduation, especially at university with high tuition and other costs.

The need to balance busy work and course schedules puts significant
strains on most undergraduate students and can be detrimental to their academic
performance and their well-being. To help alleviate this problem, e-learning tech-
nology in general, and CMS environments in particular, can be used to liberate



284 Atanas Radenski

students from the time and location constraints by actively engaging student in
asynchronous learning activities

Solution:

Use a standard CMS environment to develop a comprehensive online
study pack which integrates all possible resources and activities that are needed
to teach and study an undergraduate course.

A study pack is a complete collection of digital resources (such as e-
texts/digital books/tutorials, lecture slides, lab manuals, sample programs) and
activities (such as quizzes, lab assignments, homework, exams, forums, chats,
and messaging). An online study pack is pre-programmed with all deadlines and
is made available to students in its entirety in the very beginning of any course
of study. A study pack template can be instantiated to support various course
sections at different schools.

In short, a study pack is an all-in-one e-learning solution that is constantly
available to students and students, independently of time and location.

Resulting Context:

An online study pack permits busy students to actively engage in learning
activities not when they are told by the instructor to do so, but when they have
the time and the desire to do so (for example, some students choose to work
at night while others chose to work early morning). In addition, students chose
what exactly to do in a particular work session (for example, one student may
choose to do a late-night quiz while another student may prefer working on a
programming lab at the same time).

An instructor who manages an online study pack directs the learning
process largely behind the scenes programming the study pack before the course
and then facilitating students during the course. Throughout the course, the
study pack offers students substantial freedom of what exactly to do and when to
do it. Doing by own choice motivates students to actively engage in the learning
process and do more.

Choice of alternative pathways in has been widely recognized as an indis-
pensable e-learning feature and has therefore been placed in the focus of major
research and development funded projects, such as EU’s TEN Competence [28].

Possible Uses:

The development of a comprehensive study pack is time consuming and
therefore is most justified for mass undergraduate courses. A well-designed study
pack can be used as a template which is instantiated for easy reuse by various
instructors.



Patterns for Active E-learning in CMS Environments 285

Related Patterns:

Self-Guided Programming Lab, Interactive Lab, Honor Report, Multiple-
Attempt Quiz

3.2.2. Self-Guided Interactive Lab.

Problem:

How can you engage students to actively learn a large number of lower-
level technical concepts that are considered boring-to-read about?

Constraints and Forces:

Contemporary technical disciplines – even those of introductory nature
– require learning about a voluminous set of low-level technical terms. Con-
sider for example introductory computing courses. Typically, such courses evolve
around the study of mainstream programming language, such as Java, C++, Vi-
sual Basic, Python, and others. These languages require acquaintance with and
understanding of a very large set of lower-level technical concepts. Consider, for
example the Java 2 platform which contains around 200 packages of classes in its
standard edition [27]. The java.lang package alone incorporates 36 classes (it also
includes 8 interfaces and relates to 36 exception classes, and 22 error classes). The
String class, arguably on of the must-know classes from the java.lang package,
contains over 60 methods and 16 constructors. Getting to know this fundamental
class alone can be a daunting experience to any learner. It is certainly under-
standable reading about such a vast number of technical concepts – as in the case
of Java methods and classes – can seem uninspiring and even dreary. It comes
to no surprise that students often tend to evade technical reading that involves
numerous lower-level concepts.

To alleviate this problem, passive reading can and should be partly re-
placed by active learning techniques. In particular, students can be engaged in
technical concept study through systematically designed self-guided lab experi-
ments.

Solution:

Use detailed interactive labs that systematically guide students through
experimentation with various technical concepts.

An interactive lab is a detailed collection of step-by-step instructions that
guide students through systematic experiments, then for observation, and for
analysis of the observed results. For example, a self-guided computing lab may tell
the student to type individual commands. As the student types each command,
she observes and analyses the result, and discovers plausible explanations of he



286 Atanas Radenski

semantics of the command. In the process, the student may consult appropriate
reading resources that facilitate the student’s comprehension.

A self-guided interactive lab should be embedded within a comprehensive
study pack. While working on the lab, students gain straightforward access to
supportive pack resources, such as tutorials and e-texts. Upon lab completion,
students receive instant credit through an honor lab report.

In short, a self-guided interactive lab guides students in active self-disco-
very through experimentation, observation; such lab can also trigger reading and
research if and when more information is needed by the learner.

Resulting Context:

An interactive lab stimulates students to actively engage in learning
trough experimentation and self-discovery instead of monotonous reading of vo-
luminous technical texts. Yet student may still read – not when they are told
by the instructor to do so, but when they are curious to find better and clearer
explanations of their interactive lab observations.

A properly designed self-guided interactive lab is carried out by students
independently from the instructor. Students feel that they are the active partic-
ipant in the lab, not the instructor. The feeling of self-discovery and the feeling
of being in control stimulate students to do more and learn more.

Possible Use:

A self-guided interactive lab can be used in introductory courses in com-
puting, mathematics, sciences, and possibly other disciplines that permit soft-
ware-based interactive experiments.

Related Patterns:

Online Study Pack, Honor Report

3.2.3. Self-Guided Programming Lab.

Problem:

How can you actively engage beginner programmers in learning general
and somewhat abstract programming methodology?

Constraints and Forces:

Programming methodology deals with the analysis, design and implemen-
tation of programs. This involves a variety of general methods, such as stepwise
refinement, top-down design and implementation, bottom-up design and imple-
mentation, and agile programming, to mention a few. While these methods
are valuable for any advanced professional, they are difficult to comprehend by
beginners. For example, stepwise refinement seems to be a method that most



Patterns for Active E-learning in CMS Environments 287

beginners seem to accept on theory but can never actually apply in their early
practice. Standard software development methods are too abstract and without
specific meaning to novices who lack experience.

To alleviate this problem, theoretical study of introductory programming
methodology needs to be partly replaced by active learning techniques. In par-
ticular, students can be engaged in intuitive hands-on study of core programming
methods through systematically designed self-guided programming labs.

Solution:

Use detailed self-guided programming labs that systematically guide stu-
dents in the development of concrete program by means of a chosen programming
methodology. For example, a particular lab may guide students of how to use
stepwise refinement in the development of a GUI.

A self-guided lab supports three programming modes that suit students
with different backgrounds. First, inexperienced students may follow complete
and detailed prescriptions of what to do and how to do it in or. Second, ex-
perienced and motivated students may acquaint themselves with the lab specifi-
cation and then develop the required software by themselves. A third category
of students may try to find a solution independently while peeking into detailed
instructions when help is needed.

A self-guided programming lab does not need to contain excessive ex-
planations of its underlying methodology; it has to simply lead students the
methodology for the development of a specific program. The methodology itself
can be explained din e-texts and lectures and practically comprehended in labs.

A self-guided programming lab should be embedded within a compre-
hensive study pack. While working on the lab, students gain straightforward
access to supportive pack resources, such as programming tutorials and reference
sources. Upon lab completion, students receive instant credit through an honor
lab report.

A self-guided programming lab guides students in active hands-on ac-
quaintance with abstract programming methodologies - through experimentation
and observation, and in supplement to reading and lectures.

Resulting Context:

A self-guided programming lab permits students to acquaint themselves
with advanced programming methodology, through hands-on activities and self-
discovery. Such labs work in concert with other forms of learning, such as lectures
and textbook reading.

A self-guided programming lab is designed to be carried out by some stu-
dents independently from the instructor. Like with interactive labs, the feeling of



288 Atanas Radenski

being in control motivates students to do and learn more. However, programming
labs are more complex than interactive labs and help in should be available in
various lab activities, such as debugging and testing.

Possible Use:

A self-guided programming lab can be used in introductory courses in
computing.

Related Patterns:

Online Study Pack, Honor Report

3.2.4. Honor Report.

Problem:

How can you grade a very large number of required interactive and pro-
gramming labs with a reasonable effort and within a short time span?

Constraints and Forces:

The importance of hands-on lab work in computing and the natural sci-
ences has been widely recognized. In introductory computing courses in par-
ticular, programming lab assignments are usually present throughout the entire
course of study. While lab assignments support active learning they pose signif-
icant challenges to the instructor with the amount of effort and time that are
needed to grade them. Consider for example an introductory class in computing
which consists of 30 students who are required to submit 25 programming exer-
cises each; if the instructor spends 10 minutes per exercise, she will spend 125
hours (more than 15 full workdays) of her time for grading alone.

Extensive grading of labs consumes a significant portion of instructor’s
professional time and also deprives students from the timely receipt of deserved
lab credit. The whole process can be quite detrimental to both instructor’s and
student’s motivation.

E-learning technology in general and CMS environments in particular can
be used to (1) reduce instructors’ grading burden and at the same (2) provide
stimulating instant credit to students upon completion of required lab work.

Solution:

Use a CMS environment to implement the following honor lab report
system. Upon the completion of each lab assignments, students are required
(1) to upload their solution and (2) to file an online lab report. In the report,
students specify all completed and partially completed labs. Provisional lab credit
is awarded automatically once the report is filed. Submitted labs and reports are
subject to audit by the instructor and provisional lab credits can be reduced by



Patterns for Active E-learning in CMS Environments 289

the instructor. Credit reduction penalties apply when students report lab work
that actually had not been performed adequately.

Such honor report system can be implemented with standard CMS func-
tionality, such as file upload facilities (for completed work) and multiple-choice
single answer questions (for the honor report itself).

Honor reports are intended to be integral parts of comprehensive study
packs, together with their corresponding labs.

Resulting Context:

Honor reports significantly reduce the time and effort spent by instructors
to grade labs who can now focus on more productive activities, such as novel
course design, individual work with students, professional development, and so
on. At the same time, honor reports provide students instant reward – in the
form of provisional self-claimed lab credit – which stimulates students to actively
engage in next lab assignments and other learning activities (all available in the
study pack).

Possible Uses:

Honor reports can be used to grade programming labs in introductory
computing courses. Beyond computing labs, honor reports can be applied to any
kinds of activities that require student submissions: review questions, exercises,
and problems. Lastly, honor reports may apply to required activities that require
no student work submission – such as reading activities for example.

Related Patterns:

Online Study Pack, Self-Guided Programming Lab, Interactive Lab

3.2.5. Multiple-Attempt Quiz.

Problem:

How can you actively engage students in reading the textbook, if they are
unwilling and possibly incapable of reading voluminous textbook chapters?

Constraints and Forces:

There is substantial anecdotal evidence on the increasing unwillingness
of the net generation of students to read textbooks. In fact, some surveys show
that students – and even instructors – consider textbooks to be one of the least
important learning resources [14, 20]. These attitudes are misfortunate because
textbooks are usually the highest-quality resources for the study academic disci-
plines. Students who are not willing to use textbooks deprive themselves from
a systematic and complete coverage of their field of study. The unwillingness to
use textbooks can be quite detrimental to the quality of one’s learning.



290 Atanas Radenski

It is possible to implement and conduct online quizzes that not only test
and grade student knowledge, but also stimulate students to make use of their
textbook and possibly other reading resources

Solution:

Use standard quiz functionality of CMS environments to implement online
quizzes that are open to enrolled students for unlimited number of attempts for
an extended period of time. To make sure students are dedicated to serious
learning, conduct single-attempt closed-book comprehensive exams that are based
on multiple-attempt quizzes.

Multiple-attempt online quizzes are intended to be integral parts of com-
prehensive study packs, together with their corresponding digital texts, tutorials,
and other reading resources.

Resulting Context:

Led by the common desire for full credit, students usually make a number
of consecutive attempts. In the process, students consult their texts to find
correct answers – or to explain answers they have accidentally guessed. Therefore,
multiple attempt quizzes trigger active reading. Students do not simply aim at
guessing correct quiz answers but also do their best to understand and learn, in
preparation for comprehensive quiz-based exams.

Multiple attempt online quizzes permit students to achieve highest pos-
sible credit and also truly learn in the process.

Possible Uses:

Multiple-attempt quizzes can be beneficially used in virtually any subject.

Related Patterns:

Online Study Pack

4. Conclusions. This paper presents five pedagogic patterns for ac-
tive e-learning: the study pack pattern, the guided interactive lab pattern, the
guided programming lab pattern, the honor report pattern, and the multiple at-

tempt quiz pattern. These patterns formalize active e-learning practices in CMS
environments as developed and used by the author and also adopted by other
instructors from various schools (see Section 1.2).

From the whole collection, the study pack pattern is most important for
it can be interpreted as an implementation framework for all other patterns.
These patterns can be implemented by mainstream CMS environments, such
as Moodle and Blackboard. With Moodle for example, we have implemented



Patterns for Active E-learning in CMS Environments 291

study packs as Moodle course entities in which labs are realized by means of
the assignment module, while quizzes and reports are implemented with the quiz
module. (Before Moodle, we have used Blackboard in similar implementation
schemes.) All implemented study packs incorporate significant original contents,
such as hundreds of pages of e-texts and labs, and also significant slide and quiz
collections.

Several student surveys testify that our active e-learning patters increase
student interest [20, 21, 26]. Most notably, surveyed students agree that the use
of integrated online study packs increase students’ desire to learn more with an
average evaluation of 4.4 on a 5-point scale [26]. Such study packs encapsulate
self-guided labs, online quizzes, honor reports, and other online resources and
activities.

REFERE NCES

[1] Alexander C., S. Ishikawa, M. Silverstein. A Pattern Language. Ox-
ford University Press, 1997.

[2] Anthony D. Patterns for Classroom Education. PLoP 1995, Monticelli,
Illinois, 1995.

[3] Bailey T., J. Forbes. Just-in-Time Teaching for CS0. SIGCSE’05, St.
Louis, Missouri, USA, 2005, 366–370.

[4] Bergin J., J. Eckstein, M. L. Manns, H. Sharp, eds. Feedback Pat-
terns.
http://www.jeckstein.com/pedagogicalPatterns/feedback.pdf, Octo-
ber 2008.

[5] Bergin J., J. Eckstein, M. L. Manns, H. Sharp, eds. Patterns for
Active Learning.
http://www.jeckstein.com/pedagogicalPatterns/activelearning.pdf,
October 2008.

[6] Bergin J., M. L. Manns., K. Marquardt, J. Eckstein, H. Sharp,

E. Wallingford, eds. Patterns for Experiental [sic] Learning.
http://www.jeckstein.com/pedagogicalPatterns/experientiallearning.pdf,
October 2008.



292 Atanas Radenski

[7] Bergin J. A Pattern Language for Initial Course Design. Proceedings of the
32nd ACM Technical Symposium on Computer Science Education, SIGCSE
01, ACM Press, Charlotte, North Carolina, USA, February 21–25, 2001,
282–286.

[8] Budd T. An Active Learning Approach to Teaching the Data Structures
Course. SIGCSE’06, Houston, Texas, USA, 2006, 143–147.

[9] Cole J., H. Foster. Using Moodle: Teaching with the Popular Open
Source Course Management System. O’Reilly, 2007.

[10] Dearden A., J. Finlay. Pattern Languages in HCI: A Critical Review.
Human-Computer Interaction, Vol. 21, No. 1, Lawrence Earlbaum Asso-
ciates, Inc., (2006), 49–102.

[11] Gamma E., R. Helm, R. Johnson, J. Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley Longman
Publishing Co., Inc., 1995.

[12] Gonzales G. A Systematic Approach to Active and Cooperative Learning
in CS1 and Its Effects on CS2. SIGCSE’06, Houston, Texas, USA, 2006,
133–137.

[13] Hillside Group. http://hillside.net/, October 2008.

[14] Lahtinen E., K. Ala-Mutka, H.-M. Järvinen. A study of the difficulties
of novice programmers. ITiCSE’05, Caparica, Portugal, ACM Press, 2005,
14–18.

[15] Manolescu D., M. Voelter, J. Noble. Pattern Languages of Program
Design 5 (Software Patterns Series). Addison-Wesley, 2006.

[16] McConnell J. Active and Cooperative Learning: Tips and Tricks (Part
I). Inroads – The SIGCSE Bulletin, 37, No. 2, (2005), 27–30.

[17] McInnis C., R. Hartley. Managing Study and Work. Commonwealth of
Australia, Department of Education, Science and Training, 2002.
www.dest.gov.au/Highered/Eippubs/Eip02 6/Eip02 6.Pdf, October
2008.

[18] Pollard S., R. Duvall. Everything I needed to Know about Teaching I
Learned in Kindergarten: Bringing Elementary Education Techniques to Un-
dergraduate Computer Science Classes. SIGCSE’06, Houston, Texas, USA,
ACM Press, 2006, 224–228.



Patterns for Active E-learning in CMS Environments 293

[19] PPP: The Pedagogical Patterns Project. Pedagogical Patterns. Re-
trieved from http://pedagogicalpatterns.org/ in October 2008.

[20] Radenski A. Digital Support for Abductive Learning in Introductory Com-
puting Courses. Proceedings of the 38th ACM Technical Symposium on
Computer Science Education, SIGCSE 07, Covington, Kentucky, USA,
March 7–10, ACM Press, 2007, 14–18.

[21] Radenski, A. Python First: A Lab-Based Digital Introduction to Com-
puter Science. Proceedings of the Eleventh Annual Conference on Innovation
and Technology in Computer Science Education, ITiCSE 06, University of
Bologna, Italy, June 26–28, 2006, ACM Press, 197–201.

[22] Razmov V., R. Anderson. Pedagogical Techniques Supported by the Use
of Student Devices in Teaching Software Engineering. SIGCSE’06, Houston,
Texas, USA, ACM Press, 2006, 344–348.

[23] Rising L. Understanding the Power of Abstraction in Patterns. IEEE Soft-
ware, Special Issue on Software Patterns, July-August 2007, 2–7.

[24] Roschelle J., D. Tatar, S. R. Chaudhury, Y. Dimitriadis, C. Pat-

ton, C. DiGiano. Improvisation, and Interactive Engagement: Learning
with Tablets. IEEE Computer, 40, Issue 9 (2007), 42–48.

[25] Rößling G., M. Joy, A. Moreno, A. Radenski, L. Malmi, A. Ker-

ren, T. Naps, R. Ross, M. Clancy, A. Korhonen, R. Oechsle, J. Á.

Velázquez Iturbide. Enhancing Learning Management Systems to Better
Support Computer Science Education. SIGCSE Bulletin Inroads, 2008 (peer
reviewed and accepted).

[26] Study Pack. Student Surveys. http://studypack.com, October 2008.

[27] Sun Microsystems, Inc. JavaTM Platform, Standard Edition 6 API Spec-
ification.
http://java.sun.com/javase/6/docs/api/, October 2008.

[28] TEN Competence. The European Network for Competence Project.
http://www.tencompetence.org/, October 2008.

[29] Vallino J. Design Patterns: Evolving From Passive to Active Learning.
33rd ASEE/IEEE Frontiers in Education Conference, Boulder, Colorado,
USA, 2003, S2C19–24.



294 Atanas Radenski

[30] Warren I. Teaching Patterns and Software Design. 7th Australasian con-
ference on Computing education – Vol. 42, Newcastle, New South Wales,
Australia, 2005, 39–49.

Atanas Radenski

Chapman University

Orange, CA 92869, USA

e-mail: radenski@chapman.edu

Received November 18, 2008

Final Accepted November 25, 2008


