
Serdica J. Computing 2 (2008), 267–276

GENETIC ALGORITHM APPROACH FOR SOLVING THE

TASK ASSIGNMENT PROBLEM*

Aleksandar Savić, Dušan Tošić, Miroslav Marić, Jozef Kratica

Abstract. In this paper a genetic algorithm (GA) for the task assignment
problem (TAP) is considered.An integer representation with standard ge-
netic operators is used. Computational results are presented for instances
from the literature, and compared to optimal solutions obtained by the
CPLEX solver. It can be seen that the proposed GA approach reaches
17 of 20 optimal solutions. The GA solutions are obtained in a quite a short
amount of computational time.

1. Introduction. In recent time, with the growth of computerization,

some problems have arisen traced in earlier times, but nowadays mostly associ-

ated with the optimization of CPU time. In earlier times, the task assignment

ACM Computing Classification System (1998): G.1.6.
Key words: evolutionary approach; genetic algorithms; assignment problems, multiprocessor

systems, combinatorial optimization.
*This research was partially supported by the Serbian Ministry of Science and Ecology under

project 144007. The authors are grateful to Ivana Ljubić for help in testing and to Vladimir
Filipović for useful suggestions and comments.



268 Aleksandar Savić, Dušan Tošić, Miroslav Marić, Jozef Kratica

was solved manually by the overseer and the distribution was done manually be-

tween working parties on construction and other working sites. The idea was to

assign tasks to the working parties minimizing jobs interferences and making the

total working time as short as possible. Nowadays computers replace working

parties and the task assignment is bounded with minimally spent CPU time with

the additional requirement that communication costs between parties should be

minimal. Some similar problems can be seen in [3, 6, 12].

In this paper a special Task Assignment Problem (TAP), sometimes called

TAS with non-uniform communication costs, is studied. The problem is present

from the beginning of computer era, but only now the new techniques capable of

solving it are being developed.

The problem of task assignment with non-uniform communication costs

can be modeled as a nonlinear integer 0-1 minimization problem.

In this paper the application based on genetic algorithms for solving TAP

is described. Because this problem is fully 0-1 integer, it is in the area of research

in recent developments of genetic algorithms (for example, see [1, 9, 10]). There

are well many documented applications considering large optimization problems

[5, 8, 13, 14], and the ideas from these applications could be applied for solving

TAP.

Let us first describe the mathematical formulation of TAP, then in brief

explain GA and finally present experimental results.

2. Mathematical formulation. The problem of task assignment with

non-uniform communication costs is related to finding an assignment of N tasks

to M processors providing that sum of:

• total cost of execution for given tasks,

• total cost of all communications between processors, while they executing

allocated tasks,

is minimal.

We will use quadratic integer programming formulation from [2].

Let there be N tasks, M processors, and eik be the cost of executing task

i on a processor k. Let cijkl be the communication cost between tasks i and j

if they are respectively assigned to processors k and l. Let us denote with 0–1

integer variable xik which has value 1 if task i is assigned to processor k.



Genetic algorithm approach for solving the task assignment problem 269

Now we can formulate the quadratic integer programming model for TAP

as follows:

(1) min

N
∑

i=1

M
∑

k=1

eikxik +

N−1
∑

i=1

N
∑

j=i+1

M
∑

k=1

M
∑

l=1

cijklxikxjl

subject to

(2)

M
∑

k=1

xik = 1, i = 1, . . . , N

(3) xik ∈ {0, 1} i = 1, . . . , N, k = 1, . . . ,M

As can be seen, the objective function is non-linear and this optimization

problem cannot be easily solved by using an exact algorithm. The constraints

(2) are natural and reflect the fact that any task can be executed only on one

processor. Now we will describe the properties of the genetic algorithm and some

of its parts for solving the presented problem.

3. Proposed GA method. The GA algorithms are stochastic me-

thods for searching and finding best solutions. They are motivated by processes

in natural world trying to emulate them. Similar to nature, GA works with in-

dividuals constituting a population. Each individual represents some solution to

the problem. As in nature, the individuals better suited for survival are at the

same time individuals that are better attain the optimal solution. These indi-

viduals are favored for passing into the next generation. The passing on of good

qualities is accomplished by using genetic operators of crossover and mutation.

The decision what individual has better quality for passing into next generation

is obtained by evaluation of the fitness function. This process of betterment of

individuals in the population is iteratively continued until an optimum is achieved

or some other stopping criterion is applied. The detailed description of GAs is

out of this paper’s scope and can be found in [11].

The encoding of individuals in our case is integer. The genetic code has

a length of N , where every gene corresponds to one particular task. This means



270 Aleksandar Savić, Dušan Tošić, Miroslav Marić, Jozef Kratica

that every gene represents the ordinal numeral of the processor on which the task

is executed. For example, if the ith gene has value k this means that xik = 1 and

xip = 0 for every p, p 6= k.

The very important parts of proposed GA are: Fitness Function, Se-

lection, Crossover and Mutation. In the following paragraphs, their use and

importance to the whole GA application will be explained.

The function find that decides the best suitability of an individual to

pass into the next generation is the fitness function. The values of this function

are computed by scaling objective values objind of all individuals into the interval

[0,1], so that the best suitable individual indmax gets value 1 and the worst indmin

gets 0. Explicitly, find =
objindmin

− objind

objindmin
− objindmax

. Now the individuals are arranged

in a non-increasing order by their best fitness: f1 ≥ f2 ≥ · · · ≥ fNpop
, where Npop

is number of individuals in population.

All elite individuals (their number being Nelite) are automatically passed

into the next generation. All non-elite individuals (their number being Nnnel =

Npop − Nelite) are subject to genetic operators. In this way the computational

time is reduced because the objective function of elite individuals is same in the

next generation and need to be calculated only once, in the first generation.

Individuals with the same genetic code in the population must be avoided,

so their fitness is set to 0 on all occurrences, except the first one. Also, the

number of individuals with the same objective function, but different genetic

code, must be limited by some constant Nrv. To avoid this problem, the fitness

of all individuals with the same value of objective function, but different genetic

material, will be set to 0 except for the first Nrv of them.

Selection operators are applied on all non-elite individuals, so they choose

which of these individuals will have offspring in the next generation. This is done

through tournaments. From the whole population an a priori set number of indi-

viduals is chosen to participate in the tournament. The number of participants is

called tournament size. The choosing of individuals is done randomly. The winner

of the tournament is the individual with highest value of the objective function.

The number of tournaments is equal to the number of non-elite individuals Nnnel,

so that exactly Nnnel parents can be chosen for crossover. The same individual

from the current generation can participate in more than one tournament. In the

standard tournament selection, the tournament size is integer and this choice can

reduce the efficiency of the algorithm.

Because of this, for selection an improved tournament selection opera-



Genetic algorithm approach for solving the task assignment problem 271

tor, Fine-grained tournament selection – FGTS [4, 5] is implemented. Here, the

tournament size is a real parameter Ftour, representing the preferable average

tournament size. In this procedure, there are two types of tournaments. One is

held k1 times, with tournament size bFtourc, and the other type is held k2 times,

with tournament size dFtoure. From here Ftour ≈
k1 · bFtourc + k2 · dFtoure

Nnnel

.

To get satisfactory results of GA, a good ratio between the number of elite

and the number of non-elite individuals is necessary. For example, for Npop = 150

an adequate proportion is Nelite = 100 and Nnnel = 50. The corresponding k1

and k2 parameters for deciding the tournament size are 30 and 20, respectively.

Typically, for Npop = 150 an adequate maximum of individuals with the same

fitness (with the same value of objective function), is Nrv = 40.

As can be seen in [4, 5, 13], FGTS performs best with value of Ftour set

on 5.4. Leaning on experience presented in the cited works, the same value is

used in this paper.

In the crossover operator, non-elite individuals are randomly paired in

bNnnel/2c pairs for exchange of genes with the intention to produce offspring

with potentially better suitability.The applying of the crossover operator on cho-

sen pair of parents produces two offsprings. In this paper a standard one-point

crossover operator is used. This operator exchanges all genes between genetic

codes of parents to produce offspring.The probability of applying the crossover

operator is 85%. This means that approximately 85% of the pairs of individuals

will exchange genes.

In genetic algorithm the simple mutation operator with frozen genes is

used. This operator changes a randomly selected gene in the genetic code of an

individual with some mutation rate. For the improvement of GA, a modification

is included dealing with so-called frozen genes. Sometimes it happens that all

individuals in the population have the same gene in a certain position. These

genes are called frozen. With the frozen genes a problem could arise because they

reduce the search space and increase the possibility of premature convergence.

Selection and crossover operators cannot change the frozen genes, because all

individuals in the population have them in the same position. The basic mutation

rate is 0.4/N .

The mentioned improvement of GA consists in increasing the mutation

rate only on frozen genes. In each generation it is determined in advance which

genes are frozen. Then, the mutation rate for these genes is increased. In the

proposed GA the increase is 2.5 times greater (1./N) than the basic mutation



272 Aleksandar Savić, Dušan Tošić, Miroslav Marić, Jozef Kratica

rate on unfrozen genes.

The initialization of population is done in a random way. So, the pop-

ulation in the first generation is the most heterogeneous and diversified genetic

pool.

The performance of the proposed GA is improved by using a caching

technique. The main idea behind this technique is to avoid the evaluation of

the objective function for individuals with the same genetic code. The values

of individuals for which the objective function was already computed are stored

by the least recently used (LRU) caching technique into the hash-queue data

structure. Because of this, whenever an individual with the same genetic code

is generated, the value of its objective function is not computed, but is found in

cache memory. This procedure can result in significant time saving. The number

of calculated values of the objective function in this implementation is limited to

5000. If the cache memory is full, then we remove the least recently used cash

memory block. Detailed information about caching GA can be found in [7].

4. Experimental results. All computations were executed on a Quad

Core 2.5 GHz PC computer with 4 GB RAM. The genetic algorithm was coded

in C. For experimental testings in our implementation the instances described at

[2] were used. These instances include different numbers of tasks (N = 10, 15)

and different numbers of processors (M = 3, 5). For each pair of task-processor

(N,M), there is a set of ten instances.

The finishing criterion of GA is the maximal number of generations Ngen

= 5000. The algorithm also stops if the best individual or best objective value

remains unchanged through Nrep = 2000 successive generations. Since the results

of GA are nondeterministic, our GA was run on a single processor 20 times for

each of the instances.

Table 1 summarizes the results of the executions of our application on

these instances. In the first column the names of instances are given. The name

of the instance carries information about the number of tasks N , the number

of processors M and the number of generated cases with same N and M . (For

example, the instance tassnu 10 3 1 is an instance which has N = 10 tasks on

M = 3 processors and it is the first case generated for this N and M). The second

and third columns contain optimal solutions and running times of the CPLEX

solver. The best GA values GAsol are given in the following column. The mark

opt is given if an optimal solution is reached and there is no difference between



Genetic algorithm approach for solving the task assignment problem 273

that solution and the solution obtained by CPLEX.

Average running times needed to detect the best GA values are given in

the t column. On average, GA finished after gen generations. The quality of

the solution in all 20 executions is evaluated as a percentage gap named agap,

with respect to the optimal solution solopt, by using standard deviation σ of the

Table 1. GA results on TAP instances

CPLEX GA

Instance name sol t sol t gen agap σ eval cache

(opt) (sec) (sec) (%) (%) (%)

tassnu 10 3 1 −719 < 1 opt 0.162 2014 0.000 0.000 12778 87.3

tassnu 10 3 2 −790 < 1 opt 0.165 2023 0.000 0.000 14800 85.4

tassnu 10 3 3 −624 < 1 opt 0.210 2624 0.641 1.208 28130 78.5

tassnu 10 3 4 −734 < 1 opt 0.172 2128 0.000 0.000 18161 83.0

tassnu 10 3 5 −871 < 1 opt 0.162 2021 0.000 0.000 15209 85.0

tassnu 10 3 6 −677 < 1 opt 0.165 2018 0.214 0.958 14270 85.9

tassnu 10 3 7 −613 < 1 opt 0.162 2026 0.000 0.000 12294 87.9

tassnu 10 3 8 −495 < 1 opt 0.164 2016 0.000 0.000 11409 88.7

tassnu 10 3 9 −750 < 1 opt 0.163 2020 0.000 0.000 14501 85.7

tassnu 10 3 10 −486 < 1 opt 0.164 2017 0.021 0.092 20510 79.7

tassnu 15 5 1 −1985 51832 opt 0.254 2285 3.131 6.743 65830 42.4

tassnu 15 5 2 −1568 129840 −1539 0.328 2900 4.827 1.579 89965 37.9

tassnu 15 5 3 −1892 52955 −1856 0.257 2223 9.905 2.110 75729 32.0

tassnu 15 5 4 −1806 91146 opt 0.292 2545 1.462 2.754 85165 32.9

tassnu 15 5 5 −1881 78795 opt 0.248 2192 2.818 2.967 69018 37.1

tassnu 15 5 6 −1950 79872 opt 0.254 2256 5.285 5.333 73777 34.8

tassnu 15 5 7 −1893 51547 opt 0.236 2072 4.691 3.892 70383 32.2

tassnu 15 5 8 −1733 108092 opt 0.241 2100 2.796 1.056 73421 30.2

tassnu 15 5 9 −1798 107982 −1780 0.246 2183 2.406 2.355 72580 33.8

tassnu 15 5 10 −1763 109963 opt 0.246 2159 4.169 2.869 71855 33.3



274 Aleksandar Savić, Dušan Tošić, Miroslav Marić, Jozef Kratica

average gap. The percentage gap agap is defined as agap =
1

20

20
∑

i=1

gapi, where

gapi = 100 ∗
GAi − solopt

solopt

and GAi represents the GA solution obtained in the

i-th running, while σ is the standard deviation of gapi, i = 1, 2, . . . , 20, obtained

by the formula σ =

√

1

20

20
∑

i=1

(gapi − agap)2. The last two columns are related

to the caching: eval represents the average number of evaluations, while cache

displays the savings (in percent) achieved by using caching technique.

As can be seen in Table 1, GA reached 17 of 20 optimal solutions and

the running time on all instances is really small. The average execution on the

biggest instance is less than half a second. The CPLEX solver also runs very fast

on instances with 10 tasks, but on larger instances, with 15 tasks, the running

times are huge (> 50 000 seconds). Although the GA algorithm did not reach the

optimal solution for 3 of 20 instances, this fact is overwhelmed by its speed. It

is obvious that CPLEX cannot handle larger instances with more than 15 tasks,

but GA will quickly give solutions of acceptable quality even in these instances.

5. Conclusions. The GA metaheuristic for solving TAP is presented.

The integer representation of the task assignment was used based on the non-

linear integer 0-1 optimization problem. The fine-grained tournament selection,

one-point crossover and simple mutation with frozen genes were used. The com-

putational performance of GA was additionally improved by caching GA tech-

nique. For almost all instances, except three, GA calculates solutions matching

optimal ones and obtained in a very small running time.

Based on the presented results, we can conclude that GA has the potential

of being a useful metaheuristic for solving other similar problems, while TAP

could be considered with additional constraints. Parallelization of the GA and

its hybridization with exact methods are most promising directions of future

work.

REFERE NCES

[1] Djurić B., J. Kratica, D. Tošić, V. Filipović. Solving the maximally

balanced connected partition problem in graphs by using genetic algorithm.

Computing and Informatics, 27, No. 3, 2008, 341–354.



Genetic algorithm approach for solving the task assignment problem 275

[2] Elloumi S. The task assignment problem, a library of instances.

http://cedric.cnam.fr/oc/TAP/TAP.html, 2004.

[3] Fidanova S., M. Durchova. Ant Algorithm for Grid Scheduling Prob-

lem. Large Scale computing, Lecture Notes in Computer Science, vol. 3743,

Springer, Germany, 2006, 405–412.

[4] Filipović V. Fine-grained Tournament Selection Operator in Genetic Al-

gorithms. Computing and Informatics, 22 (2003), 143–161.

[5] Filipović V. Selection and migration operators and Web services in paral-

lel evolutionary algorithms. PhD thesis, University of Belgrade, Faculty of

Mathematics, 2006 (in Serbian).

[6] Gong L., X.H. Sun, E. Waston. Performance Modeling and Prediction

of Non-Distributed Network Computing. IEEE Transaction on Computers,

51, No 9 (2002), 1041–1055.

[7] Kratica J. Improving Performances of the Genetic Algorithm by Caching.

Computers and Artificial Intelligence, 18 (1999), 271–283.

[8] Kratica J., V. Kovačević-Vujčić, M. Čangalović. Computing strong

metric dimension of some special classes of graphs by genetic algorithms.

Yugoslav Journal of Operations Research, 18, No. 2 (2008), 143–151.

[9] Kovačević J. Hybrid Genetic Algorithm For Solving The Low-

Autocorrelation Binary Sequence Problem. Yugoslav Journal of Operations

Research, in press.

[10] Marić M. An efficient genetic algorithm for solving the multi-level unca-

pacitated facility location problem. Computing and Informatics, in press.

[11] Mitchell M. Introduction to genetic algorithms. Cambridge, Massa-

chusetts, MIT Press, 1999.

[12] Schopf M. J. General Architecture for Scheduling on the Grid. Specia issue

of JPDC on Grid Computing, 2002,

http://www.mcs.anl.gov/~schopf/Pubs/sched.arch.2002.pdf, 2008.

[13] Stanimirović Z. Genetic algorithms for solving some NP-hard hub location

problems. Ph. D. thesis, University of Belgr. Faculty of Mathematics, 2007.



276 Aleksandar Savić, Dušan Tošić, Miroslav Marić, Jozef Kratica

[14] Stanimirović Z. A genetic algorithm approach for the capacitated single

allocation p-hub median problem. Computing and Informatics, 27 (2008),

in press.

Aleksandar Savić
Dušan Tošić
Miroslav Marić
Faculty of Mathematics
University of Belgrade,
Studentski trg 16/IV
11 000 Belgrade, Serbia
e-mail: aleks3rd@eunet.yu

dtosic@matf.bg.ac.yu

maricm@matf.bg.ac.yu

Jozef Kratica
Mathematical Institute
Serbian Academy of Sciences and Arts
Kneza Mihaila 36/III
11000 Belgrade, Serbia
e-mail: jkratica@mi.sanu.ac.yu

Received September 25, 2008
Final Accepted October 15, 2008


