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FLQ, THE FASTEST QUADRATIC COMPLEXITY BOUND

ON THE VALUES OF POSITIVE ROOTS OF POLYNOMIALS

Alkiviadis G. Akritas, Andreas I. Argyris, Adam W. Strzeboński

On the 20th Anniversary of the University of Thessaly

Abstract. In this paper we present FLQ, a quadratic complexity bound on
the values of the positive roots of polynomials. This bound is an extension
of FirstLambda, the corresponding linear complexity bound and, conse-
quently, it is derived from Theorem 3 below. We have implemented FLQ
in the Vincent-Akritas-Strzeboński Continued Fractions method (VAS-CF )
for the isolation of real roots of polynomials and compared its behavior with
that of the theoretically proven best bound, LMQ. Experimental results
indicate that whereas FLQ runs on average faster (or quite faster) than
LMQ, nonetheless the quality of the bounds computed by both is about the
same; moreover, it was revealed that when VAS-CF is run on our benchmark
polynomials using FLQ, LMQ and min(FLQ, LMQ) all three versions run
equally well and, hence, it is inconclusive which one should be used in the
VAS-CF method.
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1. Introduction. Computing an upper bound, ub, on the values of the
(real) positive roots of a polynomial p(x) is a very important operation because
it can be used to isolate these roots — that is, to find intervals on the positive
axis each containing exactly one positive root.

As an example, suppose that the positive roots of p(x) lie in the open
interval ]0, ub[ and that we have a test for determining the number of roots in
any interval ]a, b[. Then, we can isolate these roots by repeatedly subdividing the
interval ]0, ub[ until each resulting interval contains exactly one root and every
real root is contained in some interval. The bound, ub, is of practical use because
we now work with a definite interval ]0, ub[, instead of ]0,+∞[.

Obviously, the sharper the upper bound, ub, the more efficient the real
root isolation method becomes, since fewer bisections will be performed. Please
note that the bisection method uses the upper bound only once and imagine
the savings in time that would occur if an isolation method depends heavily on
repeated computations of such bounds!

Such is the case with the Vincent-Akritas-Strzeboński Continued Frac-
tions (VAS-CF ) method for isolating the positive roots of polynomial equations.
This method is based on Vincent’s theorem of 1836, [25], which states:

Theorem 1. If in a polynomial, p(x), of degree n, with rational coef-
ficients and without multiple roots we perform sequentially replacements of the
form

x← α1 +
1

x
, x← α2 +

1

x
, x← α3 +

1

x
, . . .

where α1 ≥ 0 is an arbitrary non negative integer and α2, α3, . . . are arbitrary
positive integers, αi > 0, i > 1, then the resulting polynomial either has no sign
variations or it has one sign variation. In the last case the equation has exactly
one positive root, which is represented by the continued fraction

α1 +
1

α2 + 1
α3+ 1

...

whereas in the first case there are no positive roots.

Note that if we represent by
ax + b

cx + d
the continued fraction that leads to

a transformed polynomial f(x) = (cx + d)np

(

ax + b

cx + d

)

, with one sign variation,

then the single positive root of f(x) — in the interval ]0,∞[ — corresponds to
that positive root of p(x) which is located in the open interval with endpoints
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b

d
and

a

c
. These endpoints are not ordered and are obtained from

ax + b

cx + d
by

replacing x with 0 and ∞, respectively. See the literature [1], [2], Chapter 7 in
[3], and the papers by Alesina & Galuzzi, [10], and [4] for a complete historical
survey of the subject and implementation details respectively.

Therefore, with Vincent’s theorem we can isolate the (positive) roots of a
given polynomial p(x). The negative roots are isolated — as suggested by Sturm
— after we transform them to positive with the replacement x← −x performed
on p(x). The requirement that p(x) have no multiple roots does not restrict the
generality of the theorem because in the opposite case we first apply square-free
factorization and then isolate the roots of each one of the square-free factors.

In 1978, [1], [2], it was found that each partial quotient αi is the integer
part of a real number — i.e. αi = bαsc, where αs is the smallest positive root
of some polynomial f(x) — and, hence, that it can be computed as the lower
bound, `b, on the values of the positive roots of a polynomial. So assuming that
`b = bαsc (ideal lower bound) we now set αi ← `b, `b ≥ 1, and perform the
replacement x ← x + `b, `b ≥ 1 — which takes about the same time as the
replacement x ← x + 1. Later, the assumption of the ideal lower bound was
abandoned, [4].

A lower bound, `b, on the values of the positive roots of a polynomial
f(x), of degree n, is found by first computing an upper bound, ub, on the values

of the positive roots of xnf

(

1

x

)

and then setting `b =
1

ub
. So what is needed is

an efficient method for computing upper bounds on the values of just the positive
roots of polynomial equations1 .

It should be emphasized that bounds on the values of just the positive
roots of polynomials are scarce in the literature. Cauchy’s bound on the values of
the positive roots of a polynomial, was used until recently in the VAS-CF real root
isolation method, [4]. In the SYNAPS implementation of the VAS-CF method,
[24], Emiris and Tsigaridas used Kioustelidis’ bound, [16] and independently ver-
ified the results obtained by Akritas and Strzeboński2 , [4]. Please note that both
bounds mentioned above, Cauchy’s and Kioustelidis’, are linear in complexity.

1With suitable transformations p(x) ≡ p(−x) = 0 and p(x) ≡ x
n
p

�
−

1

x � = 0 one can find

the lower −ub and upper −
1

ub
bounds of the negative roots x

−
of p(x) respectively, −ub ≤

x
−
≤ −

1

ub
.

2See also Sharma’s work, [20] and [21], where he used the worst possible positive lower
bound to prove that the VAS-CF method is still polynomial in time!
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Especially Kioustelidis’ bound appeared in 1986, [16], but went rather unnoticed
by Hong, [15], when he developed the first quadratic complexity bound on the
values of the positive roots of polynomials.

In recent work, [9], [5], a theorem by Ştefănescu of 2005, [22], was extended
and generalized in such a way that all the — then existing — linear complexity
methods for computing bounds on the values of the positive roots of a polynomial
are derived from it. Based on Theorem 3, FL and LM , two new linear complexity
bounds were developed; and using their minimum in VAS-CF not only was the
isolation of real roots speeded up 15% — when compared with the version of
VAS-CF implementing Cauchy’s bound, [7] — but it also became always faster
than the Vincent-Collins-Akritas3 bisection method (VCA-Bisect), [6].

Recently, motivated by Hong’s work, [15], new quadratic complexity meth-
ods were developed for computing bounds on the values of the positive roots of
polynomials. These methods — as well as the one developed by Hong — are also
derived from Theorem 3 and are presented elsewhere [7]. It has been demon-
strated that — except for FLQ — among the quadratic complexity bounds the
estimate obtained by LMQ is always the best.

In section 2 we present Theorem 3 from which all methods for computing
bounds on the values of the positive roots of a polynomial are derived. We then
present the linear complexity bounds — F irst Lambda, (FL) and Local M ax,
(LM) — along with their corresponding quadratic complexity bounds — FLQ
and LMQ. Please note that LMQ was first presented elsewhere, [7].

In section 3 we present the code for the quadratic complexity bounds
FLQ and LMQ.

Finally, in section 4 we compare the estimates of FLQ and LMQ along
with the time needed to compute them; moreover, we compare their performance
in the VAS-CF real root isolation method.

2. Theoretical Background. In the literature there are bounds on
the absolute values of the roots, [13] , [17], [26], and bounds on just the positive
roots of polynomials, [16], [18]. Although of limited use, the most recent addition
to the latter type of bounds has been by Ştefănescu, [22]. He proved the following
theorem:

Theorem 2 (Ştefănescu, 2005). Let p(x) ∈ R[x] be such that the number
of variations of signs of its coefficients is even. If

(1) p(x) = c1x
d1 − b1x

m1 + c2x
d2 − b2x

m2 + . . . + ckx
dk − bkx

mk + g(x),

3Misleadingly referred to in the literature as “modified Uspenskys” or “Descartes” method
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with g(x) ∈ R+[x],ci > 0, bi > 0, di > mi > di+1 for all i, the number

(2) B3(p) = max

{

(

b1

c1

)1/(d1−m1)

, . . . ,

(

bk

ck

)1/(dk−mk)
}

is an upper bound for the positive roots of the polynomial p for any choice of
c1, . . . , ck.

Ştefănescu’s theorem introduces the concept of matching or pairing a
positive coefficient with the negative coefficient of a lower order term; however,
Ştefănescu’s theorem worked only for polynomials with an even number of sign
variations.

Ştefănescu’s theorem was generalized in the sense that Theorem 3 below
applies to polynomials with any number of sign variations, [9]. To accomplish
this, the concept of breaking up a positive coefficient was introduced, whereby
each of the several parts of the coefficient is paired with negative coefficients of
lower order terms4 , [5].

Theorem 3. Let p(x)

(3) p(x) = αnxn + αn−1x
n−1 + . . . + α0, (αn > 0)

be a polynomial with real coefficients and let d(p) and t(p) denote the degree and
the number of its terms, respectively.

Moreover, assume that p(x) can be written as

p(x) = q1(x)− q2(x) + q3(x)− q4(x) + . . . + q2m−1(x)− q2m(x) + g(x),(4)

where all the polynomials qi(x), i = 1, 2, . . . , 2m and g(x) have only positive
coefficients. In addition, assume that for i = 1, 2, . . . ,m we have

q2i−1(x) = c2i−1,1x
e2i−1,1 + . . . + c2i−1,t(q2i−1)x

e2i−1,t(q2i−1)

and

q2i(x) = b2i,1x
e2i,1 + . . . + b2i,t(q2i)x

e2i,t(q2i) ,

where e2i−1,1 = d(q2i−1) and e2i,1 = d(q2i) and the exponent of each term in
q2i−1(x) is greater than the exponent of each term in q2i(x). If for all indices
i = 1, 2, . . . ,m, we have

t(q2i−1) ≥ t(q2i),

4After our work, [5], Ştefănescu also extended his Theorem 2, [23].
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then an upper bound of the values of the positive roots of p(x) is given by
(5)

ub = max
{i=1,2,...,m}

{

(

b2i,1

c2i−1,1

)
1

e2i−1,1−e2i,1

, . . .,

(

b2i,t(q2i)

c2i−1,t(q2i)

)
1

e2i−1,t(q2i)
−e2i,t(q2i)

}

,

for any permutation of the positive coefficients c2i−1,j, j = 1, 2, . . . , t(q2i−1).
Otherwise, for each of the indices i for which we have

t(q2i−1) < t(q2i),

we break up one of the coefficients of q2i−1(x) into t(q2i)− t(q2i−1) + 1 parts, so
that now t(q2i) = t(q2i−1) and apply the same formula (5) given above.

For a proof of this theorem see [5]. Please note that the partial extension
of Theorem 2 presented in [9] does not treat the case t(q2i−1) < t(q2i).

Crucial Observation. Pairing up positive with negative coefficients and break-
ing up a positive coefficient into the required number of parts — to match the
corresponding number of negative coefficients — are the key ideas of this theo-
rem. In general, formulae analogous to (5) hold for the cases where: (a) we pair
coefficients from the non-adjacent polynomials q2l−1(x) and q2i(x), for 1 ≤ l < i,
and (b) we break up one or more positive coefficients into several parts to be
paired with the negative coefficients of lower order terms.

Among others, the following linear and quadratic complexity bounds on
the values of the positive roots of polynomials are derived from Theorem 3.

2.1. Two Linear Complexity Bounds Derived from Theorem 3.

Various linear complexity bounds can be obtained from Theorem 3; the ones
described below have been presented elsewhere, [5], but not in the context of
complexity. We present them here again, briefly, for completeness:

FL. “first–λ” implementation of Theorem 3. For a polynomial p(x), as in (4),
with λ negative coefficients we first take care of all cases for which t(q2i) >
t(q2i−1), by breaking up the last coefficient c2i−1,t(q2i), of q2i−1(x), into
t(q2i) − t(q2i−1) + 1 equal parts. We then pair each of the first λ posi-
tive coefficients of p(x), encountered as we move in non-increasing order of
exponents, with the first unmatched negative coefficient.

LM. “local-max” implementation of Theorem 3. For a polynomial p(x), as
in (3), the coefficient −αk of the term −αkx

k in p(x) — as given in Eq. (3)

— is paired with the coefficient
αm

2t
, of the term αmxm, where αm is the

largest positive coefficient with n ≥ m > k and t indicates the number of
times the coefficient αm has been used.
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These two bounds have been extensively tested — on various classes of specific
and random polynomials — and it was found that their combination, min(FL,
LM), is the best among the linear complexity bounds, [5]; moreover, a speed-up of
15% was achieved with VAS-CF/min(FL,LM), that is, the continued fractions
real root isolation method using the bound min(FL,LM) — when compared
with VAS-CF/Cauchy, the continued fractions method implementing Cauchy ’s
bound, [7].

2.2. Two Quadratic Complexity Bounds Derived from Theo-

rem 3. In this subsection we present FLQ and LMQ the two quadratic com-
plexity implementations of FL and LM respectively, which are also derived from
Theorem 3; other quadratic complexity bounds are described elsewhere [7]. In
general, the estimates obtained from the quadratic complexity bounds are bet-
ter than those obtained from their linear complexity counterparts, as they are
computed after much greater effort.

FLQ. “First-Lambda” Quadratic complexity implementation of Theorem 3.
For a polynomial p(x), as in (4), with λ negative coefficients we first take
care of all cases for which t(q2i) > t(q2i−1), by breaking up the last coef-
ficient c2i−1,t(q2i), of q2i−1(x), into d2i−1,t(q2i) = t(q2i) − t(q2i−1) + 1 equal
parts. Then each negative coefficient aµ < 0 is “paired” with each one of
the preceding min(µ, λ) positive coefficients aν divided by dν — that is,
each of the preceding min(µ, λ) positive coefficient aν is “broken up” into
dν equal parts, where dν is initially set to 1 and its value changes only if
the positive coefficient aν is broken up into equal parts, as stated in The-
orem ??; u(ν) indicates the number of times aν can be used to calculate
the minimum, it is originally set equal to dν and its value decreases each
time aν is used in the computation of the minimum — and the minimum
is taken over all ν; subsequently, the maximum is taken over all µ.

That is, we have:

ubFLQ = max
{aµ<0}

min
{aν>0:ν>min(µ,λ):u(ν)6=0}

ν−µ

√

−
aµ
aν

dν

.

LMQ. “Local-Max”” Quadratic complexity implementation of Theorem 3.
For a polynomial p(x), as in (3), each negative coefficient aµ < 0 is “paired”
with each one of the preceding positive coefficients aν divided by 2tν — that
is, each positive coefficient aν is “broken up” into unequal parts, as is done
with just the locally maximum coefficient in the local max bound; tν is
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initially set to 1 and is incremented each time the positive coefficient aν is
used — and the minimum is taken over all ν; subsequently, the maximum
is taken over all µ.

That is, we have:

ubLMQ = max
{aµ<0}

min
{aν>0:ν>µ}

ν−µ

√

−
aµ
aν

2tν

.

From the above two descriptions it is clear that FLQ tests just the first min(µ, λ)
positive coefficients, whereas LMQ tests all the preceding positive coefficients.
Hence, FLQ is faster (or quite faster) than LMQ. In addition, since the other
quadratic complexity bounds described in [7] work as the LMQ bound, it is
obvious that FLQ is the fastest quadratic complexity bound.

3. Algorithmic Implementation of FLQ and LMQ. In this
section we present the code for LMQ and FLQ, the latter in two parts.

Algorithm 3.1. LMQ implementation
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Algorithm 3.2. FLQ implementation part 1
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Algorithm 3.3. FLQ implementation part 2



FLQ, the Fastest Quadratic Complexity Bound. . . 155

4. Empirical Results. The experimental results presented in this
section are divided in two groups: Tables 1–2 and Tables 3–7.

In Tables 1 and 2 we present the estimates computed by FLQ and LMQ
for various classes of specific and random/custom polynomials. Moreover, the
time needed for each estimate is recorded in parentheses. These computations
were performed on a P4 Northwood 2.4GHz @ 2.7GHz, 1GB RAM computer.
The following random/custom polynomials were used:

• sRand:
p(x) = anxn + an−1x

n−1 + . . . + a2x
2 + a1x + a0

with random {an, an−1, . . . , a0} ∈ [−220, 220] and seed = 1001.

• usRand:
p(x) = xn + an−1x

n−1 + . . . + a2x
2 + a1x + a0

with random {an−1, . . . , a0} ∈ [−220, 220] and seed = 1001.

• pRand I:

p(x) =
∏

degree

(x− n)

with random n ∈ [−210, 210] and seed = 1001.

• pRand II:

p(x) =
∏

degree

(x− n)

with random n ∈ [−21000, 21000] and seed = 1001.

• Custom Poly I:

p(x) = x3 + (10100)x2 − (10100)x− 1

• Custom Poly II:

p(x) = x9 + 3x8 + 2x7 + x6 − 4x4 + x3 − 4x2 − 3
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Table. 1. Bounds for positive roots of various types of polynomials. MPR stands for the maximum positive root, computed numerically.

Degrees
Polynomial Bounds 10 100 200 300 400 500 600 700 800 900

Laguerre LMQ 200 2 × 104 8 × 104 18 × 104 32 × 104 50 × 104 72 × 104 98 × 104 128 × 104 162 × 104

(0.) (0.563) (3.562) (11.187) (25.594) (49.782) (87.344) (142.453) (220.766) (329.719)
FLQ 100 104 4 × 104 9 × 104 16 × 104 25 × 104 36 × 104 49 × 104 64 × 104 81 × 104

(0.) (0.015) (0.031) (0.078) (0.109) (0.172) (0.25) (0.328) (0.406) (0.5)
MPR 29.92 374.98 767.82 1162.8 1558.81 1955.44 2352.5 2749.87 3147.48 3545.29

ChecyshevI LMQ 2.23607 7.07107 10 12.2474 14.1421 15.8114 17.3205 18.7083 20 21.2132
(0.) (0.078) (0.515) (1.547) (3.453) (6.453) (10.688) (15.891) (23.406) (33.75)

FLQ 1.58114 5 7.07107 8.66025 10 11.1803 12.2474 13.288 14.1421 15
(0.) (0.) (0.015) (0.047) (0.62) (0.11) (0.141) (0.172) (0.234) (0.281)

MPR 0.987688 0.999877 0.999969 0.999989 0.999992 0.999995 0.999997 0.999997 0.999998 0.999998
ChecyshevII LMQ 2.12132 7.03562 9.97497 12.227 14.1244 15.7956 17.3061 18.6949 19.9875 21.2014

(0.015) (0.079) (0.531) (1.563) (3.453) (6.468) (10.719) (16.687) (24.656) (34.734)
FLQ 1.5 4.97494 7.05337 8.64581 9.98749 11.1692 12.2372 13.2193 14.1333 14.9917

(0.) (0.016) (0.015) (0.047) (0.078) (0.109) (0.141) (0.187) (0.219) (0.265)
MPR 0.959493 0.999516 0.999878 0.999945 0.999969 0.99998 0.999986 0.99999 0.999992 0.999994

Wilkinson LMQ 110 10100 40200 90300 160400 250500 360600 490700 640800 810900
(0.) (6.391) (52.234) (179.75) (438.516) (878.) (1549.89) (2508.52) (3833.52) (5569.42)

FLQ 55 5050 20100 45150 80200 125250 180300 245350 320400 405450
(0.) (0.016) (0.047) (0.078) (0.014) (0.203) (0.282) (0.359) (0.516) (0.656)

MPR 10 100 200 300 400 500 600 700 800 900
Mignotte LMQ 1.77828 1.04811 1.02353 1.01557 1.01164 1.00929 1.00773 1.00662 1.00579 1.00514

(0.) (0.) (0.015) (0.) (0.) (0.016) (0.) (0.) (0.) (0.015)
FLQ 1.63069 1.04073 1.01995 1.01321 1.00988 1.00789 1.00656 1.00562 1.00491 1.00437

(0.) (0.016) (0.) (0.016) (0.15) (0.016) (0.016) (0.015) (0.016) (0.015)
MPR 1.5763 1.0362 1.0177 1.0117 1.0088 1.0070 1.0058 1.0050 1.0044 1.0039

sRand LMQ 2.01011 14.3673 1.39904 3.54546 3.65744 7.75602 2.5257 1.53975 1.70317 1.65478
(0.) (0.219) (1.016) (2.11) (3.828) (6.) (8.625) (11.735) (14.765) (18.734)

FLQ 2.45417 25.1062 1.04472 3.54546 2.5862 7.75602 2.03158 1.6409 1.48873 1.17328
(0.) (0.031) (0.157) (0.281) (0.547) (0.843) (1.157) (1.656) (1.5) (2.375)

MPR 1.6173 8.15106 0.982276 1.1221 1.71921 1.012339 0.983633 0.983628 1.010844 0.983628
usRand LMQ 1.57532 1916790 1.40849 1.78915 105264 1272940 1803160 12.6533 1197500 790432

(0.) (0.25) (1.032) (2.125) (3.797) (5.891) (8.5) (11.531) (14.875) (18.765)
FLQ 3.16629 1916790 1.06293 15.6504 105264 1272940 901580 6.32665 598750 790432

(0.016) (0.047) (0.156) (0.266) (0.531) (0.828) (1.156) (1.641) (2.046) (2.328)
MPR 0.925381 1.018871 0.982509 0.9841 1.026689 1.011621 1.331235 1.755769 1.013423 1.228396
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Table. 2. cont. Bounds for positive roots of various types of polynomials. MPR stands for the maximum positive root,
computed numerically.

Degrees
Polynomial Bounds 100 200 500

pRand I LMQ 5984.55 8818.63 14435.4
(10.297) (75.453) (1053.55)

FLQ 4231.72 5555.39 9093.75
(0.562) (1.453) (21.156)

MPR 998 998 1019
20 50 100

pRand II LMQ 2.478575900498678× 10301 4.381225845096125× 10301 4.62669× 10301

(7.812) (138.86) (1359.34)
FLQ 1.925678288070229× 10301 3.210297938962179× 10301 3.51814× 10301

(1.844) (12.578) (169.594)
MPR 0.99777× 10301 1.05601× 10301 1.05601× 10301

Custom Poly I LMQ 2
(0.)

FLQ 1
(0.)

MPR 1
Custom Poly II LMQ 1.3218

(0.)
FLQ 1.1487

(0.)
MPR 1.06815
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Tables 3–7 show the time needed for the VAS-CF method to isolate the
real roots of various classes of specific and random polynomials — described in the
header of each table — when it uses the bounds FLQ, LMQ and min(FLQ,LMQ).
These computations were done on Windows XP laptop computer with with 1.8
Ghz Pentium M processor, and 2 GB of RAM.

Table 3. Special Polynomials

Polynomial Degree No. of FLQ LMQ FLQ + LMQ

Roots T(s) T(s) T(s)

Laguerre 100 100 0.191 0.19 0.18

Laguerre 500 500 34.69 36.192 33.589

Laguerre 1000 1000 610.047 703.772 662.152

Chebychev I 100 100 0.15 0.161 0.17

Chebychev I 500 500 29.773 27.79 26.528

Chebychev I 1000 1000 422.577 384.073 386.285

Chebychev II 100 100 0.14 0.171 0.16

Chebychev II 500 500 27.76 30.303 27.149

Chebychev II 1000 1000 408.628 381.839 382.57

Wilkinson 100 100 0.03 0.05 0.03

Wilkinson 500 500 4.717 4.777 4.817

Wilkinson 1000 1000 56.341 57.343 57.392

Mignotte 100 100 0.011 0.01 0.01

Mignotte 500 500 0.24 0.19 0.17

Mignotte 1000 1000 1.022 0.811 0.821

Table 4. Polynomial with randomly generated coefficients

Coefficients Degree No. of Roots FLQ LMQ FLQ + LMQ

(bit length) (average) T(s) T(s) T(s)

10 500 5.2 0.5628 0.4228 0.4244

10 1000 6.4 3.7152 2.4256 2.3254

10 2000 4 41.498 20.9762 21.08

1000 500 3.6 0.4384 0.2428 0.2442

1000 1000 5.2 2.8442 1.566 1.5804

1000 2000 4.8 20.161 10.6712 10.291
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Table 5. Monic polynomials with randomly generated coefficients

Coefficients Degree No. of Roots FLQ LMQ FLQ + LMQ

(bit length) (average) T(s) T(s) T(s)

10 500 5.6 0.4586 0.3788 0.3864

10 1000 6.8 4.0158 2.736 2.7358

10 2000 7.2 60.453 25.0124 23.6416

1000 500 5.2 0.6028 0.4166 0.4146

1000 1000 5.2 1.943 1.3658 1.38

1000 2000 5.6 20.6296 13.7298 13.2852

Table 6. Products of factors (x20−randomly generated integer root)

Coefficients Degree No. of FLQ LMQ FLQ + LMQ

(bit length) Roots T(s) T(s) T(s)

20 500 50 4.178 4.6408 3.8814

20 700 70 14.4728 13.5738 14.1442

20 1000 100 60.251 52.5754 51.6798

1000 300 30 7.05 5.5642 6.371

1000 400 40 18.933 15.9492 16.65

1000 500 50 47.5842 37.6782 41.3212

Table 7. Products of factors (x−randomly generated integer root)

Coefficients Degree No. of FLQ LMQ FLQ + LMQ

(bit length) Roots T(s) T(s) T(s)

10 100 100 0.2682 0.3528 0.276

10 200 200 1.3278 1.2878 1.2918

10 500 500 19.7542 21.3006 19.2678

1000 20 20 0.032 0.03 0.028

1000 50 50 0.8732 1.0298 0.8552

1000 100 100 14.529 17.321 14.1182
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5. Conclusions. From the data presented in the previous section it
becomes obvious that the quality of the estimates of both FLQ and LMQ is
about the same, but FLQ runs faster (or quite faster) than LMQ. However,
when the bounds FLQ, LMQ and min(FLQ,LMQ) are implemented in the
VAS-CF real root isolation method it is inconclusive which one should be used.

Extensive testing of VAS-CF implementing various linear and quadratic
complexity bounds has revealed that V AS − CF/LMQ is fastest for all classes
of polynomials, except when there are very many very large roots; in that case,
V AS − CF/min(FL,LM) is the fastest by a very small difference; in fact, a
speed-up of 40% was attained when V AS−CF/LMQ was compared with V AS−
CF/Cauchy, the original implementation, [8].

Moreover, as was shown elsewhere, [6], V AS − CF/min(FL,LM) is al-
ways faster than the Vincent-Collins-Akritas bisection real root isolation method
(VCA-bisec)5 , [12], or any of its variants, [19]. Therefore, our current results
widen the gap between VAS-CF and VCA-bisec.
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