
Serdica J. Computing 2 (2008), 137–144

EFFICIENT COMPUTING OF SOME VECTOR
OPERATIONS OVER GF (3) AND GF (4)

Iliya Bouyukliev, Valentin Bakoev

Abstract. The problem of efficient computing of the affine vector oper-
ations (addition of two vectors and multiplication of a vector by a scalar
over GF (q)), and also the weight of a given vector, is important for many
problems in coding theory, cryptography, VLSI technology etc. In this paper
we propose a new way of representing vectors over GF (3) and GF (4) and
we describe an efficient performance of these affine operations. Computing
weights of binary vectors is also discussed.

1. Introduction. Many algorithms in coding theory, cryptography,
combinatorial circuit theory, VLSI technology, communications etc. use the stan-
dard affine vector operations (addition of two vectors and multiplication of a vec-
tor by a scalar) over a given finite field GF (q), and also computing the weights
of vectors. For example, they exploit such operations for:

— generating the codewords of a linear code given by its generator matrix;
— computing the minimum distance or the weight spectrum of a linear

code;
— encryption of a given message and/or decryption of a given ciphertext

by applying a given secret key in a block-serial manner. Affine vector operations
over GF (2p) are very important and mostly used in cryptography;

ACM Computing Classification System (1998): F.2.1, G.4, I.1.1.
Key words: Finite field, Bit-wise representation, Addition of vectors, Multiplication of a

vector by a scalar.

138 Iliya Bouyukliev, Valentin Bakoev

— design of adders, multipliers and decoders (for some communication
devices), which use Reed-Solomon codes for detecting and correcting errors, etc.

Efficient implementations of such operations (as subalgorithms in the
main algorithms) play a significant role in determining the general running-time
of these algorithms. Any such implementation strongly depends on the way the
vectors are represented, which implies the ways of performance of the affine vec-
tor operations and the corresponding computational costs. These problems have
occurred while trying to optimize the generation of codewords and computing
the number of codewords of fixed weights in linear codes [4]. The algorithms rep-
resented there are implemented in the package for investigation of linear codes
Q-Extension [3] written by the first author. During their development we have
performed many experiments trying to solve the same problems, for the same
codes with Q-Extension and with MAGMA Computational Algebra System [5].
Comparing the running-times, we concluded that MAGMA maintains an effi-
cient representation of vectors and affine operations with them over GF (q). By
applying new ways for:

(1) representation of vectors (codewords) over GF (q), for q = 2, 3, 4;
(2) realization of the affine vector operations over these fields;
(3) computing the weight of a codeword,

we succeeded to in speeding up the algorithms more than 10 times. These ways
are represented and discussed in this paper.

2. Preliminaries. The simplest and most popular way of representing
an n-dimensional vector over GF (q) is by using a one-dimensional array with n
elements (usually bytes and then we have a “byte-wise representation”), which
store the vector’s coordinates. So the addition of two vectors and the multiplica-
tion of a vector by a scalar are implemented in n steps (for each pair of coordinates
or coordinate–scalar) by looking-up in tables, representing the addition and the
multiplication in GF (q). These tables are computed and filled in preliminarily,
and the implementation of arithmetic operations by them is known as “tabular

arithmetic”. Another possible approach is to perform the operations over inte-
gers and to take the result modulo q, which is known as “modular arithmetic”.
It costs significantly more computational time than the tabular arithmetic. The
computing of the weight of a given vector (i.e. the number of its non-zero coordi-
nates) is just counting the non-zero elements of the corresponding array. Hence
each of these operations has a running-time of Θ(n).

The bit-wise representation of vectors is quite popular. This is the most
natural way, especially for q = 2, for binary computers, where each coordinate of
the binary vector is represented in one bit. If w is the length of the computer word
in bits, then any n-dimensional binary vector is represented in an array of dn/we

Efficient Computing of Some Vector Operations. . . 139

computer words. The addition of computer words over GF (2) is implemented as
a “bit-wise sum modulo 2” on a hardware level. The multiplication of a binary
vector by a scalar λ ∈ GF (2) is trivial.

For a given q > 2, k = dlog2 qe bits are necessary for the bit-wise represen-
tation of the elements of GF(q). Usually, one more bit (called “carry-bit”) is used
for ignoring the carry in addition of integers. If the computer word has w bits,
then m = bw/(k+1)c elements of GF (q) can be represented in a single computer
word. So an n-dimensional vector over GF (q) is represented as one-dimensional
array of dn/me computer words.

Because of their numerous applications, the affine vector operations over
fields of the type GF (2p) are well-studied (for example, the field GF (28) is used
by the U.S. Advanced Encryption Standard, AES). When the field elements are
regarded as polynomials of degree p − 1 with coefficients from GF (2), the usual
bit-wise representation of the element is in p bits, storing the coefficients of the
corresponding polynomials. The addition of two vectors over GF (2p) is trivial, it
is a bit-wise sum modulo 2 of the computer words representing the vectors. So the
attention of the researchers is focused on the multiplication in such fields, which
is more difficult. It is reduced to multiplication of the corresponding polynomials,
division of the result by a given irreducible polynomial of degree p and taking
the remainder. There are many efficient hardware and software implementations
of this approach, some of them are patented. When the elements of GF (2p) are
represented as powers of a primitive element, the multiplication of two elements
is reduced to addition of the powers and taking the result modulo 2p − 1.

The affine vector operations over fields of type GF (q), where q is prime,
are not so well-studied. Some techniques for representations of vectors over GF (3)
and for addition of vectors over it are considered in [2, 1]. Tabular and tabular-
arithmetic realizations are investigated, the results of their applications in gener-
ating the codewords of some ternary codes are discussed and compared. Addition
of vectors over GF (q), q > 2, is considered in [6], where a bit-wise representation
of the coordinates with an additional carry-bit is used. An algorithm for addition
of two vectors is developed for the theoretical model “virtual two-address Random
Access Machine”. This algorithm performs bit-wise addition of two vectors and
reduces the result modulo p, applying masks, conjunctions and shifts. A C++
implementation of this algorithm is presented in [1] and practical results about
some ternary codes are given. They show that this purely arithmetic algorithm
has a better running-time than the tabular algorithms mentioned above.

3. Weights of binary vectors. Four classical algorithms for comput-
ing the weight of a binary vector B, stored in an n-bit computer word, are given
in [7]. The first of them checks consecutively the bits of B and counts the ones

140 Iliya Bouyukliev, Valentin Bakoev

among them. So it runs in time Θ(n). The second algorithm runs as follows:
while B 6= 0 it assigns B = B∧ (B−1) and counts these steps. Here “∧” denotes
bit-wise conjunction, it replaces the rightmost one in B with zero on each step.
Hence its running-time is proportional to the weight of B, i.e., it is O(n). The
third algorithm uses masks, shifts and bit-wise additions and it computes the
weight of B in log2 n steps. The last algorithm is based on the idea of solving
the problem for all possible binary vectors with n coordinates and storing the ob-
tained results in a table. It uses one-dimensional array W with 2n elements and
for each i, 0 ≤ i ≤ 2n − 1, W [i] contains the weight of the binary representation
of the integer i. So, this weight can be taken from W [i] in a constant time.

The usage of the fourth algorithm in computing the weights of binary
vectors is the most effective solution for many applications among the mentioned
above. We shall discuss an implementation of it.

The most essential task of the fourth algorithm is to fill in the table of
weights W . We propose a simple and efficient way to do this by the following
function Fill_Weights, written in C++. It computes the weights of all n-bits
binary vectors and fills them in the array W , i.e. W [i] stores the weight of the
vector which is the binary representation of the integer i, for i = 0, 1, . . . , 2n − 1.
It is known that if i is an integer, 0 ≤ i ≤ 2k − 1, represented by the binary
vector αi, whose weight is wt(αi), and the integer j = i + 2k is represented
by the vector αj , then its weight wt(αj) = wt(αi) + 1. Hence we can define
the weights in the array W inductively. Obviously W [0] = 0, W [1] = 1. If
the values of W [i] are known, for 0 ≤ i ≤ 2k − 1, then W [i + 2k] = W [i] + 1,
for 0 ≤ i ≤ 2k − 1 and for k = 1, 2, . . . , 2n−1. The function Fill_Weights is
based on this property, which implies its correctness. It computes the weight of
each serial vector directly, in a constant time, and so its running-time is Θ(2n).
Obviously, this high computational cost will be compensated when the weights of
at least 2n/n binary vectors have to be computed. So it is necessary to choose an
appropriate size of the array W , to estimate the number of computing of weights
in advance and to decide whether to use this algorithm. When its usage is not
justified, some of the three mentioned above algorithms for computing the weight
of a single binary vector should be used.

typedef unsigned short cword; // the type of the computer word

const unsigned int n = sizeof(cword) * 8; // number of bits in a computer word

const unsigned int dim = 1 << n; // the size dim = 2^n;

unsigned char W [dim]; // the array containing the weights

void Fill_Weights ()

{

cword k= 1;

Efficient Computing of Some Vector Operations. . . 141

W[0]= 0; W[1]= 1; // initial values, for k=1

int m= 2; // m = 2^k

while (k < n)

{

for (int i= 0; i< m; i++)

W[i+m]= W[i]+1;

k++;

m<<=1; // instead of m=2*m

}

}

4. Computing the affine vector operations over GF (3) and
GF (4). We assume that the vectors have n coordinates and n is equal to
the size of the computer word (when the number of the coordinates is smaller,
then the vector can be filled at the left by zeroes to the size of the computer
word). Further we use the signs “¬”, “∧”, “∨”, and “⊕” to denote the bit-wise
boolean functions: negation (binary complement), conjunction, disjunction and
exclusive or (sum modulo 2) of computer words, correspondingly. We propose a
representation of vectors, which is different from the one given above.

Firstly we consider the field GF (3). Let α = (an−1, . . . , a1, a0) be a
vector over it. We represent α in three computer words α0, α1 and α2 as follows:
α0 = (a′n−1

, . . . , a′
1
, a′

0
), where the bit a′

i = 1 when ai = 0 and a′i = 0 otherwise,
for i = 0, 1, . . . , n − 1 (i.e. α0 is a characteristic vector of these coordinates of α,
equal to 0). Analogously, α1 = (a′′n−1

, . . . , a′′
1
, a′′

0
), a′′i = 1 if ai = 1 and a′′i = 0

otherwise, for i = 0, 1, . . . , n−1 (α1 is a characteristic vector of these coordinates
in α, equal to 1), and α2 = (a′′′n−1

, . . . , a′′′
1

, a′′′
0

), a′′′i = 1 if ai = 2 and a′′′i = 0
otherwise, for i = 0, 1, . . . , n−1 (α2 is a characteristic vector of these coordinates
in α, equal to 2). So, for the bits in position i in α0, α1 and α2, only one of
them is 1, and the rest two bits are zeroes, for 0 ≤ i ≤ n − 1. For example, if
α = (1, 2, 1, 0, 2, 2, 1, 0), then α0 = (0, 0, 0, 1, 0, 0, 0, 1), α1 = (1, 0, 1, 0, 0, 0, 1, 0)
and α2 = (0, 1, 0, 0, 1, 1, 0, 0). We denote this way for representation of a given
vector α by α = (α0, α1, α2).

The addition and the multiplication in GF (3) are represented by the
following well-known tables:

+ 0 1 2 ∗ 0 1 2
0 0 1 2 0 0 0 0
1 1 2 0 1 0 1 2
2 2 0 1 2 0 2 1

Addition in GF (3) Multiplication in GF (3)

Let α = (an−1, . . . , a1, a0) and β = (bn−1, . . . , b1, b0) be vectors over
GF (3), α = (α0, α1, α2), and β = (β0, β1, β2). If their sum is the vector γ =

142 Iliya Bouyukliev, Valentin Bakoev

(γ0, γ1, γ2), then (following the table for addition) we obtain:

γ1 = (α1 ∧ β0) ∨ (α0 ∧ β1) ∨ (α2 ∧ β2);

γ2 = (α0 ∧ β2) ∨ (α1 ∧ β1) ∨ (α2 ∧ β0);

γ0 = ¬(γ1 ∨ γ2).

Obviously, this way of addition needs exactly 12 boolean operations and 3 as-
signments.

Let us consider the multiplication of the vector α = (an−1, . . . , a1, a0) =
(α0, α1, α2) by the scalar λ ∈ GF (3). If λ.α = δ = (δ0, δ1, δ2), we have three
cases, depending on λ:

— if λ = 0, then: δ0 = 2n − 1, δ1 = 0̃ and δ2 = 0̃, where the constant
2n − 1 is computed preliminarily, and 0̃ denotes the zero-vector of n coordinates;

— if λ = 1, then: δ0 = α0, δ1 = α1 and δ2 = α2;

— if λ = 2, then: δ0 = α0, δ1 = α2 and δ2 = α1.

So, this realization needs at most two checks (to choose the case) and no
other operations, except the assignments.

To compute the weight of a given vector α = (α0, α1, α2), it is sufficient
to compute the weight of the binary vector (α1 ∨ α2).

Now we consider the field GF (4) = {0, 1, x, x + 1}. Any vector α =
(an−1, . . . , a1, a0) over GF (4) can be represented in three computer words again:
α0, α1 and αx. Analogously to the previous case α0 = (a′n−1

, . . . , a′
1
, a′

0
) is a

characteristic vector of these coordinates in α, equal to 0. The vector α1 =
(a′′n−1

, . . . , a′′
1
, a′′

0
), a′′i = 1 when ai = 1 or ai = x + 1, and otherwise a′′

i = 0, for
i = 0, 1, . . . , n − 1 (i.e., α1 is a characteristic vector of these coordinates in α,
where either 1, or x + 1 take a part). Similarly, αx = (a′′′n−1

, . . . , a′′′
1

, a′′′
0

), a′′′i = 1
when ai = x or ai = x+1, and otherwise a′′′

i = 0, for i = 0, 1, . . . , n−1 (so α2 is a
characteristic vector of these coordinates in α, where either x, or x+1 take a part).
For example, if α = (1, x + 1, 1, x, 0, 0, x, x + 1), then α0 = (0, 0, 0, 0, 1, 1, 0, 0),
α1 = (1, 1, 1, 0, 0, 0, 0, 1) and αx = (0, 1, 0, 1, 0, 0, 1, 1). We denote this way for
representation of a given vector α over GF (4) by α = (α0, α1, αx).

The following tables represent addition and multiplication in GF (4).

+ 0 1 x x + 1 ∗ 0 1 x x + 1
0 0 1 x x + 1 0 0 0 0 0
1 1 0 x + 1 x 1 0 1 x x + 1
x x x + 1 0 1 x 0 x x + 1 1

x + 1 x + 1 x 1 0 x + 1 0 x + 1 1 x

Addition in GF (4) Multiplication in GF (4)

Efficient Computing of Some Vector Operations. . . 143

Let us consider the addition of two vectors α = (an−1, . . . , a1, a0) and
β = (bn−1, . . . , b1, b0) over GF (4), α = (α0, α1, αx) and β = (β0, β1, βx). Let
α + β = γ = (γ0, γ1, γx). Following the table of addition we obtain:

γ1 = α1 ⊕ β1;

γx = αx ⊕ βx;

γ0 = ¬(γ1 ∨ γx).

So, exactly four operations are sufficient to obtain the vector γ.

The multiplication of a vector α = (α0, α1, αx) by the scalar λ ∈ GF (4)
is almost as simple. Let λ.α=δ=(δ0, δ1, δx). We have four cases, depending on λ:

— if λ = 0, then: δ0 = 2n − 1, δ1 = 0̃ and δx = 0̃;

— if λ = 1, then: δ0 = α0, δ1 = α1 and δx = αx;

— if λ = x, then: δ0 = α0, δ1 = αx and δx = α1 ⊕ αx;

— if λ = x + 1, then (x + 1).α = x.α + α. Using the given realizations of
these two operations we obtain: δ1 = α1 ⊕ αx, δx = α1 and δ0 = ¬(δ1 ∨ δx).

So, for the multiplication we have at most three checks (for choosing the
case for λ) and no more than three operations (apart from the assignments).

The weight of a given vector α = (α0, α1, αx) is the same as the weight
of the binary vector (α1 ∨ αx).

We note that the vector α0 is unnecessary in the representation of α over
GF (4). It can be omitted and so α = (α1, αx). Obviously, this representation
does not change the way of computing the affine vector operations over GF (4)
given above, except that γ0 and δ0 should not be computed. Hence the computing
of these operations becomes much faster.

5. Conclusions. Here we proposed a new way for a bit-wise repre-
sentation of vectors over GF (3) and GF (4). We considered implementations of
the affine vector operations over each of these fields. Computing the weight of
a given vector, represented in this way, was also discussed. We determined the
computational costs of these operations, which allows us to call them efficient.
Another reason to do this are the results of our experiments, mentioned in the
beginning. We applied these representations and operations in the package Q-
Extension. Using them in the procedures for computing the weight spectrum,
minimum distance and the number of codewords of fixed weights in linear codes
makes the corresponding algorithms run more than 10 times faster (in compari-
son with the usage of byte-wise representation of the codewords and the tabular
arithmetic operations). The experimental results show, that for GF (2), GF (3)
and GF (4), Q-Extension and MAGMA 2.11-13 (student version) have compara-

144 Iliya Bouyukliev, Valentin Bakoev

ble running-times for solving the same problems, for the same codes, on the same
computer. Moreover in computing the weight spectrum Q-Extension runs faster.

REFERE NCES

[1] Baicheva Ts. Covering radii of certain classes of linear codes, Ph.D. Thesis,
1998.

[2] Baicheva Ts., K. Manev. Finding a linear closure of a set of vectors over
a finite field of a non-binary characteristic. Mathematics and Education in

Mathematics 23 (1994), 313–318. (in Bulgarian)

[3] Bouyukliev I. What is Q-Extension? Serdica J. Computing 1 (2007), 115–
130. http://www.moi.math.bas.bg/~iliya/Q ext.htm

[4] Bouyukliev I., V. Bakoev. A Method for Efficient Computing the Num-
ber of Codewords of Fixed Weights in Linear Codes. Discrete Applied Math-
ematics (to appear).

[5] Computational Algebra Group at the University of Sydney, The Magma
Computational Algebra System, http://magma.maths.usyd.edu.au/magma/

[6] Manev K., R. Stefanov. Yet Another Algorithm for Addition of Vectors
in Non Binary Finite Field, ACCT Fifth Intern. Workshop, June 1–7, 1996,
Sozopol, Bulgaria, pp. 190–194.

[7] Reingold E., J. Nievergelt, N. Deo. Combinatorial algorithms. Theory
and practice, Prentice-Hall, 1977.

Iliya Bouyukliev

Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

P.O. Box 323

5000 Veliko Tarnovo, Bulgaria

e-mail: iliya@moi.math.bas.bg

Valentin Bakoev

Department of Mathematics and Informatics

Veliko Tarnovo University

2, Theodosi Tarnovski Str.

5000 Veliko Tarnovo, Bulgaria

e-mail: v bakoev@yahoo.com

Received March 6, 2008

Final Accepted May 29, 2008

