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ON THE WEIGHT DISTRIBUTION OF THE COSET

LEADERS OF CONSTACYCLIC CODES

Evgeniya Velikova, Asen Bojilov

Abstract. Constacyclic codes with one and the same generator polynomial
and distinct length are considered. We give a generalization of the previous
result of the first author [4] for constacyclic codes. Suitable maps between
vector spaces determined by the lengths of the codes are applied. It is proven
that the weight distributions of the coset leaders don’t depend on the word
length, but on generator polynomials only. In particular, we prove that every
constacyclic code has the same weight distribution of the coset leaders as a
suitable cyclic code.

1. Introduction. Let C be an a-constacyclic code of length n over the
finite field Fq = GF (q), i. e., if whenever (c1, c2, . . . , cn) is in C, so is (acn, c1, . . . ,
cn−1) (a is a nonzero element of Fq). A leader of a coset b + C is the vector
with the smallest Hamming weight in that coset and by wt(b+C) we denote the
weight of the coset’s leader of b + C, i.e., wt(b + C) = min{wt(x) | x ∈ b + C}.
Some applications of codes require knowledge of the spectrum of leaders of all
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cosets of a code. Let us denote by ωe the number of cosets b + C for which
wt(b +C) = e. It is clear that ω0 = 1; ω0 +ω1 + · · ·+ωn = qn−k and ωt = 0, for
every t > n− k. The spectrum of the coset leaders of the code C will be denoted
ω(C) = (ω0, ω1, . . . , ωn−k).

Let us consider the standard correspondence between vectors from the
n-dimensional vector space Fq

n and polynomials from the factor ring of the poly-
nomials Fq[x]/(x

n − a), defined by

b = (b0, b1, . . . , bn−1) ↔ b(x) = b0 + b1x+ · · · + bn−1x
n−1.

A generator polynomial g(x) of the constacyclic code C is a nonzero
polynomial of the smallest degree such that b ∈ C if and only if g(x)|b(x).
Let C be a constacyclic [n, k] code with the generator polynomial g(x) where
g(x) | xn − a. Then the degree of g(x) is n− k and the number of cosets b + C
of code C is equal to qn−k.

In all known tables ([1], [2], [3], [5], [6], [7]) cyclic codes are grouped by
the code length and by the roots of the generator polynomials. It is proved in
this paper that there is a connection between the spectrum of coset leaders of
constacyclic codes over a finite field GF (q) with one and the same generator
polynomials and different lengths.

2. Cosets of constacyclic codes with equal generator poly-

nomial. Let C0 be a a-constacyclic [n0, k] code over the finite field with q
elements Fq. The generator polynomial g(x) of C0 has degree deg(g(x)) = n− k,

g(x)|(xn0 − a) and h(x) =
xn0 − a

g(x)
is a parity check polynomial of the code C0.

If n = n0s it is clear that xn0 − a | xn − as. Then the [n, n− deg(g(x))]-code C
generated by g(x) is a as-constacyclic code.

Theorem 2.1. Let a ∈ Fq, a 6= 0, n = n0s and g(x) ∈ Fq[x] be a

polynomial of deg g(x) = m such that g(x) | (xn0 − a). Then the [n, n −m] as-

constacyclic code C = 〈g(x)〉 and the [n0, n0−m] a-constacyclic code C0 = 〈g(x)〉
have equal spectra of coset leaders, i. e., ω(C) = ω(C0).

P r o o f. Let b0 ∈ F n0

q and b0↑ be the extended vector b0↑ = (b0, 0, . . . , 0)
from F n

q . Note that b0(x) = b0↑(x) and wt(b0) = wt(b0↑). It is clear that
b′

0
+ C0 = b0 + C0 iff b′

0
↑ + C = b0↑ + C. Therefore there exists a map

ϕ : {b0 + C0 | b0 ∈ Fq
n0} → {b + C | b ∈ Fq

n}
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between the cosets of the codes C0 and C defined by ϕ(b0 + C0) = b0↑ + C.
Obviously, the map ϕ is injective. If b0 is one of the coset leaders of b0 + C0

then

wt(b0 + C0) = wt(b0) = wt(b0↑) ≥ wt(b0↑ + C) = wt(ϕ(b0 + C0)).

For an arbitrary vector z = (z0, . . . , zn−1) ∈ Fq
n, let us consider the

vector z↓ = (y0, . . . , yn0−1) ∈ Fq
n0 , where yi = zi + azi+n0

+ · · · + as−1zi+(s−1)n0

for all i ∈ {0, . . . , n0 − 1}. Note that the polynomial z↓(x) is the remainder of
the division of z(x) by xn0 − a and

z(x) =

n−1
∑

i=0

zix
i ≡

n0−1
∑

i=0

(zi + azi+n0
+ · · · + as−1zi+(s−1)n0

)xi =

=

n0−1
∑

i=0

yix
i = z↓(x) (mod xn0 − a),

because

xn0 ≡ a (mod xn0 − a).

From g(x) | xn0 − a we obtain that

z(x) ≡ z↓(x) (mod g(x)).

Therefore z′ + C = z + C iff z′↓ + C0 = z↓ + C0, and (z↓)↑ + C = z + C. We
obtain a map

ψ : {z + C | z ∈ Fq
n} → {y + C0 | y ∈ Fq

n0}

between the cosets of the codes C and C0 defined by ψ(z+C) = z↓+C0 and the
map ψ is injective.

It is clear that if yi 6= 0 then there exists j = 0, 1, . . . , s − 1 such that
zi+jn0

6= 0 and wt(zi)+wt(zi+n0
)+· · ·+wt(zi+(s−1)n0

) ≥ 1. Hence wt(z↓) ≤ wt(z).

If z is the coset leader of z +C then

wt(z + C) = wt(z) ≥ wt(z↓) ≥ wt(z↓ + C0) = wt(ψ(z + C)).

Since (b0↑)↓ = b0, b0 ∈ F n0

q , we have

(ψϕ)(b0 + C0) = ψ
(

ϕ(b0 + C0)
)

= ψ(b0↑ + C) = (b0↑)↓ + C0 = b0 + C0

and therefore the map ψϕ is the identity map over the cosets of the code C0.
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Similarly, we obtain the map ϕψ is the identity map over the cosets of
the code C, because

(ϕψ)(z + C) = ϕ
(

ψ(z + C)
)

= ϕ(z↓ + C0) = (z↓)↑ + C = z + C.

Therefore the maps ϕ and ψ are bijections between the cosets of the codes
C and C0 and inverse to each other.

Finally, we have for every b0 ∈ F n0

q

wt(b0 + C0) ≥ wt(ϕ(b0 + C0)) ≥ wt(ψϕ(b0 + C0)) = wt(b0 + C0)

and therefore wt(b0 + C0) = wt(ϕ(b0 + C0)) �

Corollary 2.2. Let a ∈ Fq, a
s = 1 and g(x) ∈ Fq[x] be a polynomial

of deg g(x) = m such that g(x) | (xn0 − a). Then the [n0s, n0s −m] cyclic code

C = 〈g(x)〉 and the [n0, n0−m] a-constacyclic code C0 = 〈g(x)〉 have equal spectra

of coset leaders, i. e., ω(C) = ω(C0).

P r o o f. It is clear that the code C is as-constacyclic (as = 1) [n, k] code
where n = n0s and applying the Theorem 2.1 we complete the proof. �

Theorem 2.3. Let a and b be nonzero constants from the field Fq and

g(x) ∈ Fq[x] be a polynomial of degree m such that g(x) | (xn − a) and g(x) |
(xl − b). Then the [n, n −m] a-constacyclic code C1 = 〈g(x)〉 and the [l, l −m]
b-constacyclic code C2 = 〈g(x)〉 have equal spectra of coset leaders, i. e., ω(C1) =
ω(C2).

P r o o f. Suppose that as = 1 and bt = 1 and denote p = ts. Then
xn − a | xnpl − anpl = xnpl − 1 and xl − b | xnpl − bnpl = xnpl − 1. Hence
g | xnpl − 1 too. Let C be the cyclic code generated by g(x) with length npl. We
conclude from Corollary 2.2 that ω(C1) = ω(C) and ω(C2) = ω(C) and therefore
ω(C1) = ω(C2). �

From Theorem 2.3 we can conclude that if C1 and C2 are two constacyclic
codes with different lengths but with one and the same generator polynomial g(x),
then ω(C1) = ω(C2).

Let n0 be the smallest integer such that g(x)|(xn0 − a0) for some a0 ∈ Fq

and C0 is a a0-constacyclic code with length n0 and generator polynomial g(x).
It is clear that there exists a number s such that n = s.n0, a = as

0 and the parity
check polynomial of the code C is

h(x) =
xn − a

g(x)
=
xn0.s − as

0

xn0 − a0
.h0.
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According to Theorem 2.1 we can find the spectra of coset leaders for code C if
we know the spectra of coset leaders for code C0.

3. Example. As an example we take the field with 7 elements F7 (q = 7),
n0 = 5, a = 3, g(x) = x4 + 5x3 + 4x2 + 6x+ 2 (g(x) | (x5 − 3)) and C0 = 〈g(x)〉.
Then the generator matrix of the code C is

G =
(

2 6 4 5 1
)

and the parity check matrix is

H =









1 0 0 0 −2
0 1 0 0 −6
0 0 1 0 −4
0 0 0 1 −5









=









1 0 0 0 5
0 1 0 0 1
0 0 1 0 3
0 0 0 1 2









.

Hence, we obtain that C0 is a [5, 1, 5]7 3-constacyclic code and each vector b ∈ F 5
7

with weight less than 2 is a unique leader of the coset b + C0. There is only
one coset with weight 0, so w0 = 1. The number of the cosets with weight

1 is

(

5

1

)

6 = 30, i. e., w1 = 30, while the number of those with weight 2 is
(

5

2

)

62 = 360, i. e., w2 = 360. If the syndrome s = Hb of the coset b + C0

has weight t ≤ 3, it can be expressed as a linear combination of t columns
of identity matrix I (I is a part of the parity check matrix H) and the coset
has a leader of weight less or equal than 3. Now, let us find the syndromes
of weight 4 which can not be expressed as a linear combination of less than
4 columns of H. We have that syndrome s =

(

s1 s2 s3 s4
)t

satisfies this

condition iff the vector
(

3s1 s2 5s3 4s4
)t

has distinct nonzero coordinates.
The different nonzero elements of the field F7 are 6 and the number of syndromes
of weight 4 are w4 = 6.5.4.3 = 360. Furthermore, the number of all cosets
is 74 = 2403 and there do not exist cosets with weight greater than 4. Hence,
w3 = 2403−30−360−360−1 = 1652. Therefore, the spectrum of the coset leaders
of the code C0 is w(C0) = (1, 30, 360, 1652, 360). According to Theorem 2.1 we
have that

C2 = 〈g(x)〉 is [10, 6, 2]7 2-constacyclic code for s = 2;
C3 = 〈g(x)〉 is [15, 11, 2]7 6-constacyclic code for s = 3;
C4 = 〈g(x)〉 is [20, 16, 2]7 4-constacyclic code for s = 4;
C5 = 〈g(x)〉 is [25, 21, 2]7 5-constacyclic code for s = 5;
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C6 = 〈g(x)〉 is [30, 26, 2]7 cyclic code for s = 6.
Note that the polynomial x5 − 3 is a codeword and therefore the codes

C2, C3, C4, C5 and C6 have minimal distance 2.
All codes have spectra of coset leaders equal to w(C0) = (1, 30, 360, 1652,

360).
Acknowledgment. The authors are grateful to Prof. S. Dodunekov for

pointing out this interesting problem.

REFERE NCES

[1] Baicheva Ts. S. The covering radius of ternary cyclic codes with length
up to 25. Designs, Codes, and Cryptography 13 (1998), no. 3, 223–227, MR
98i:94038.

[2] Baicheva Ts. S. On the covering radius of ternary negacyclic codes with
length up to 26. IEEE Transactions on Information Theory 47 (2001), no. 1,
413–416.

[3] Dougherty R., H. Janwa. Covering radius computations for binary cyclic
codes. with microfiche supplement. Mathematics of Computation 57 (1991),
no. 195, 415–434, MR 91j:94029.

[4] Downie D. E., N. J. A. Sloane. The covering radius of cyclic codes of
length up to 31. IEEE Transactions on Information Theory 31 (1985), no. 3,
446.

[5] Velikova E. The weight distribution of the coset leaders of ternary cyclic
codes with generating polynomial of small degree. Annuaire de L’Universite

de Sofia 97 (2005).

[6] Velikova E., K. Manev. The covering radius of cyclic codes of lengths 33,
35 and 39. Annuaire de L’Universite de Sofia 81 (1987).

[7] Manev K., E. Velikova. The covering radius and weight distribution of
cyclic codes over GF(4) of lengths up to 13. Internat. Workshop on Algebraic
and Combinatorial Coding Theory, Leningrad, 1990.

Faculty of Mathematics and Informatics

Sofia University

5 James Baucher blvd

Sofia, Bulgaria

e-mail: velikova@fmi.uni-sofia.bg

bojilov@fmi.uni-sofia.bg

Received January 31, 2008

Final Accepted May 15, 2008


