
Serdica J. Computing 1 (2007), 87–100

APOLLO 13 RISK ASSESSMENT REVISITED

István Bukovics

Abstract. Fault tree methodology is the most widespread risk assessment
tool by which one is able to predict – in principle – the outcome of an event
whenever it is reduced to simpler ones by the logic operations conjunction
and disjunction according to the basics of Boolean algebra. The object
of this work is to present an algorithm by which, using the corresponding
computer code, one is able to predict – in practice – the outcome of an event
whenever its fault tree is given in the usual form.

Introduction. Fault tree methodology is the most widespread risk
assessment tool by which one is able to predict – in principle – the outcome of an
event whenever it is reduced to simpler ones by the logic operations conjunction
(“AND”) and disjunction (“OR”). Since the last century’s sixties a number of
monographs, textbooks, bibliographies and standards are available dealing with
fault tree methodology [1].

In the following it is supposed that the reader is familiar with the basics
including the most important Boolean algebraic notions. Still, they are summari-
zed for the sake of convenience below.

ACM Computing Classification System (1998): F.4.1.
Key words: Fault tree, risk assessment, prime event, conjunction and disjunction.

88 István Bukovics

The object of this work is to present an algorithm by which, using the
corresponding computer code, one is able to predict – in practice – the outcome
of an event whenever its fault tree is given in the usual form. The name of the
algorithm is the acronym “FLORIAN” (Failure Logic Oriented Risk Imminence
Assessment Normatives) given in honor of the firemen’s patron St. Florian. The
FLORIAN algorithm will be applied to the Apollo 13 fault tree and it will be
shown how to predict the outcome of the top event

“Fuel cell power not available on main service module buses”.

One of the most notable fault trees is that of the Apollo 13 accident
elaborated by the NASA in 1970 June [2].

It is supposed that the reader can access the Internet sites where further
references can be found. The Apollo 13 fault tree is quite sizable having almost
200 “base events” and more then 300 “composite events”. See the definitions in
a later part of the present article.

These events constitute an indirect Boolean function of about 200 variab-
les.

The mathematical problem is to determine the “roots” of this function.
The root is the set of all base events whose non-occurrence results in the non-
occurrence of the top event. It is out of the question to determine all the roots
of such a huge Boolean function. However, it will be shown that it is always
possible – in practice (using an up to date PC) – to determine the “best” root in
a natural sense.

The problem of finding the root of a (not necessarily indirect) Boolean
function is in close relationship with the Boolean satisfiability problem
(SAT)[3].

By definition it is: given a Boolean expression written using only AND,
OR, NOT, variables, and parentheses, is there some assignment of TRUE and
FALSE values to the variables that will make the entire expression true? Now
our “Boolean root seeking problem” sounds like this: given a Boolean expression
written using only AND, OR, variables, and parentheses, is there some assignment
of FALSE values to the variables that will make the entire expression false?

SAT-problems are intensively investigated in several branches of science
(see e.g. [4]).

Notions, notations and conventions.
Events [5]. Events are denoted by A,B,C, . . . or sometimes if necessary,

by double capitals as e.g. TE

Apollo 13 risk assessment revisited 89

If A occurs if an only if B, then it is written that A = B.

It is well-known that if A = B and B = C then B = A and A = C.

The event that occurs if and only if both B and C occur is called the
conjunction (or the meet) of B and C and is written as B ∧ C.

The event that occurs if and only if either B or C occurs is called the
disjunction (or the union) of B and C and is written as B ∨ C.

The operation signs ∧ and ∨ are loosely speaking also called conjunction
and disjunction respectively.

The basic properties of disjunction and conjunction are as follows.

For all A, B, C

A ∧ (B ∧ C) = (A ∧ B) ∧ C and A ∨ (B ∨ C) = (A ∨ B) ∨ C,

A ∧ B = B ∧ A and A ∨ B = B ∨ A,

A ∧ (B ∨ A) = A and A ∨ (B ∧ A) = A,

A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C) and A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C).

The event that always occurs is denoted by I.

The event that never occurs is denoted by O.

Always:

A ∧ I = A and A ∨ O = A.

The equations above are the axioms (or the basic rules) of Boolean alge-
bra.

If A = A ∧ B then it is written that A ⊆ B or B ⊇ A and it is said that
A implies B or that B is implied by A.

It follows from the above that for all A, B, C:

if A ⊆ B and B ⊆ C then A ⊆ B

and

if A ⊆ B and B ⊆ A then A = B.

If A implies B and A 6= B then we write: A ⊂ B or, equivalently, B ⊃ A.

If A ⊂ B and there is no such C for which A ⊂ C and C ⊂ B, then we
say that B is a/the parent of A.

Fault tree events. The Fault Tree in question is denoted by FT.

Events belonging to the FT are indexed by e, f, g, . . . ∈ {1, 2, . . . , nEvt},
where nEvt is the total number of events occurring in the FT.

90 István Bukovics

The event of index e is denoted by Evt(e). Instead of speaking of the
event Evt(e) we speak for short of “the event e”.

The index of the TopEvent of the FT is 1.

If Evt(e) is the case then it is said that the logic value of Evt(e) is True,
denoted by: Evt(e).LogVal = “T”. Also, we say that Evt(e) is active (or loosely
speaking “e is active”).

If Evt(e) is not the case then it is said that the logic value of Evt(e) is
False, denoted by: Evt(e).LogVal = “F”. Also, we say that Evt(e) is passive (or
loosely speaking “e is passive”).

If the logic value “F” (False) is assigned to an active event then we say
“e is passivated”.

In a fault tree each event expects that the topevent has a unique
parent. The index of the parent of Evt(e) is denoted by Evt(e).Parent. If
f = Evt(e).Parent then we say “f is the parent of e”.

Each event Evt(e) has a unique name. It is denoted by Evt(e).Name.

To be able to treat common cause events properly, we must differentiate
between an event’s name and content.

For all e, Evt(e).Name consists of three parts: the Prefix, the PostFix
and the namecontent of Evt(e).

The Prefix of Evt(e) is denoted by Evt(e).PreFix, e. g. “3.2.1.1.8.4”. It
is a unique string of integers to identify the event and its parent simultaneously.

Thus the parent of 3.2.1.1.8.4 is 3.2.1.1.8; the fourth child’s prefix of the
event with prefix 3.2.1.1.8 is 3.2.1.1.8.4.

The Postfix of Evt(e) is denoted by Evt(e).PostFix, e. g. “(V)”. It repre-
sents the logic type of e in computer code.

The Content of (the name of) Evt(e) is denoted by Evt(e).Content, e.g.
“2-3” or “1-1 Generated power not delivered to buses.”

Here only the short form (1-1, 1-2, . . .) will be used as it stands in the
original NASA fault tree. While the name of the event is – by construction –
unique, it may happen that the content is not. If two events e and f have equal
content and different parents g and h respectively, then we say that g and h are
common cause events.

If Evt(e) is the parent of events Evt(f), Evt(g), Evt(h), . . . then Evt(f),
Evt(g), Evt(h), . . . are called the children of Evt(e). Loosely speaking they
are called the “Kids” of e. The set of all children of Evt(e) is denoted by
Evt(e).Children.

If an event has a child then it is called a composite event.

It follows that:

Apollo 13 risk assessment revisited 91

A composite conjunctive event is passive if and only if it has a passive
child.

A composite disjunctive event is active if and only if it has an active child.

A prime event is forlorn (or “do not care”) if

(1) it is passive and its parent is active disjunctive;

(2) it is active and its parent is passive conjunctive.

If an event has no children then it is called a PrimeEvent (or BaseEvent).

If Evt(e) is a PrimeEvent then, for the sake of brevity, we say “e is
prime”.

If a child of Evt(e) is prime then it is called, for short, a “PrimeKid”.

For each active primeevent e one can speak of the renovation cost of p,
notated Evt(e).RenCost. It is the cost that one has to pay to passivate e.

Similarly, Evt(e).RenTime is the notation of the time that is necessary to
passivate the active primeevent e.

The collection name for Evt(e).RenTime and Evt(e).RenCost is the
Franklin property of e.

The best PrimeKid of an active event f with respect to a Franklin
property is the event e such that f = Evt(e).Parent and Evt(e).RenCost or
Evt(e).RenTime is minimal among all the children of f (i.e. the siblings of e)
respectively according to f ’s given Franklin property.

In the present paper Franklin properties are randomly assigned to each
prime event in the interval [1, 99].

The level of event Evt(e) is defined recursively and denoted by
Evt(e).Level.

Evt(1).Level is 0 (i. e. the TopEvent’s level of the FT is by definition 0).

If Evt(e).Level = L for e = 1, 2, . . . , nEvt; L = 1, 2, . . . and e is the parent
of Evt(f) for any f 6= e, then Evt(f).Level = Evt(e).Level + 1.

The maximal value of Evt(e).Level (e = 1, 2, . . . , nEvt) is denoted by
Lmax.

Fault tree and event functions.

Event functions and Boolean functions are synonyms in our context.

Our main concern is indirect Boolean function without negation. To every
fault tree there belongs an indirect Boolean function without negation.

Consider an excerpt from the Apollo 13 fault tree:

The indirect Boolean function TE (Top Event) corresponding to the fault
tree fragment of Fig. 1 is as follows:

TE = A ∨ B ∨ C is the topevent of FT.

92 István Bukovics

Fig. 1. Excerpt from the Apollo 13 fault tree [6]

Its namecontent: “1-0 Fuel cell power not available on service module
buses.”

A is a primitive event.

Its name: “1-1 Generated power not delivered to buses.”

B is a primitive event.

Its namecontent: “1-2 Fuel cells not commanded to generate power.”

C = D ∧ E ∧ F is a conjunctive event.

Its namecontent: “1-3 Fuel cells fail to generate power with commands to
present.”

D is a disjunctive event not expanded here further in the FT fragment.

Its namecontent: “1-4 Fuel cell No 2 fails to generate required power when
commanded.”

E is a disjunctive event not expanded here further in the FT fragment.

Its namecontent: “1-5 Fuel cell No 1 fails to generate required power when
commanded.”

F is a disjunctive event not expanded here further in the FT fragment.

Its namecontent: “1-6 Fuel cell No 3 fails to generate required power when
commanded.”

Thus the explicit form of TE of FT is:

TE = A ∨ B ∨ C

= A ∨ B ∨ (D ∧ E ∧ F).

Apollo 13 risk assessment revisited 93

This is the disjunctive normal form [4, p. 33] (DNF) of TE. The conjunctive
normal form [4, p. 33] (CNF) is:

TE = (A ∨ D) ∧ (A ∨ E) ∧ (A ∨ F).

From which it is easily seen that TE has three independent roots:

{A,D}, {A,E}, {A,F}.

When CNF has a huge amount of factors (as in the case of the FT) then
it is hard to determine CNF from the explicit form of the Boolean function of
the FT.

Although E and F are considered originally identical, we treat them as
different because of their content being different referring to Fuel cell No. 2 and
No. 1, respectively.

The standard graphical representation of the fault tree seems to be quite
out of date. Its drawback is that it is hard to overview. Due to the availability
of Microsoft Windows R© type explorers it is more natural to represent fault trees
that way.

There are a number of firms dealing with risk assessment using fault tree
methodology.

Recently Item Software R© has added to their portfolio the new QRAS
(Quantitative Risk Assessment) System package which has been funded by NASA
since 1997.

QRAS is a comprehensive Microsoft Windows R©-based software tool for
conducting Probabilistic Risk Assessment. (http://www.itemsoft.com)

In this paper the original Apollo 13 fault tree is rewritten in Microsoft
Windows R© Explorer fashion. The computer code was developed at PROFES R©

LTD using the Profes + 4 software package. (www.profes.hu)

The Main Algorithm (FLORIAN).

Step 1: Set Level to 0 (L = 0).

Step 2: L = L + 1.

Step 3: If L > Lmax then exit.

Step 4: Set e = 0.

Step 5: Let e = e + 1.

Step 6: If e > nEvt then goto Step 2.

94 István Bukovics

Step 8: If e is not prime then goto Step 5.

Step 9: If Evt(e).Level = L and Evt(e).Parent is active and disjunctive
then passivate all of its active PrimeKids.

Step 10: If Evt(e).Level = L and Evt(e).Parent is active and conjunctive
then passivate the Evt(e)’s best active PrimeKid with respect to the given Frank-
lin property.

Step 11: Compute the logic value of the topevent. If it is “True” then
exit.

Step 12: Goto 5.

Beside the main algorithm a number of sub-algorithms are developed at
PROFES R© to display the results properly on Windows-based personal computers.

Representation of Apollo 13 fault tree in Microsoft Win-
dows R© explorer fashion. In Fig. 2 below only the “short content” of the
original Apollo 13 fault tree gate-texts are used as 1-1, 1-2, The original text
can be reproduced from the cited Internet site.

The results.
The state representation. Within Profes, risk systems are characteri-

zed by the system states. By definition, the state of the system is the ordered set
of all the primeevents’ states. The state of an event e is “True” (“T” for short) if
e is the case and “False” (“F” for short) otherwise. Diagrammatically True/False
state of a primeevent is represented by an arrow directed upward/downward.

Composite events’ state are represented by a distinctive shape of the
arrow.

The suggested system prevention response to any failures
It is a mere incident that items in row 2 and 3 of column 2 are equal.
In the case of other fault trees the situation is different.

The state page. To each state there belongs a table showing the connec-
tion between prime event indices and their respective actvity and content. Fig. 6
below shows a fragment of case #3 in Fig. 5.

Apollo 13 risk assessment revisited 95

Fig. 2. The Fault Tree in the original Apollo 13 fault tree is rewritten in Microsoft
Windows R© Explorer fashion using the Profes + 4 software package.

Expanded in 3-level depth.
The sign “>” refers to primeevents

(With the permission of PROFES R© www.profes.hu)

96 István Bukovics

Fig. 3. The Fault Tree in the original Apollo 13 fault tree is rewritten in Microsoft
Windows R© Explorer fashion using the Profes + 4 software package.

Event 1-8 expanded in 6-level depth.
The sign “>” refers to primeevents

(With the permission of PROFES R© www.profes.hu)

Apollo 13 risk assessment revisited 97

Fig. 4. The (active) state of the risk system, represented by the original Apollo 13 fault
tree, represented by the Profes Software Package. Event 1-8 expanded in 6-level depth.
The System state is defined by a random assignment of “True” to 82 prime events out

of 195 ones. In this state, the top event is “True”.
On clicking an arrow it turns around and the result of the system state is displayed

immediately.
(With the permission of PROFES R© www.profes.hu)

98 István Bukovics

Fig. 5. The suggested prevention of the risk system, represented by the original Apollo
13 fault tree.

Excerpt of a table containing all of the system’s active (topevent) states
Column 1: Serial number of the cases.

Column 2:
Row 1: The number of the randomly selected active prime events out of the total 195;
Row 2: The number of the recommended primes to passivate with minimal renovation

cost;
Row 3: The number of the recommended primes to passivate with minimal renovation

time.
Column 3: The indices of the active/passive primes yielding minimal cost/time after

passivation in parenthesis/brackets respectively.
Column 4, 5:

Row 1: Total cost/time of the recommended passivation;
Row 2: Maximal possible cost/time of the recommended passivation;

Row 3: Runtime of algorithm FLORIAN.
(With the permission of PROFES R© www.profes.hu)

Apollo 13 risk assessment revisited 99

Fig. 6. Excerpt of the State Page corresponding to case #3 in Fig. 5.
Column 1: prime event index.

Column 2: Entry “X” – active prime event.
Entry “F” – forlorn prime event;

Empty entry – passive prime event;
Column 2: prime event name prefix.

Column 3: prime event name content.
(With the permission of PROFES R© www.profes.hu)

100 István Bukovics

REFERE NCES

[1] Henley E. J., H. Kukamoto. Reliability Engineering and Risk Assessment.
Prentice Hall, 1981.

[2] http://nssdc.gsfc.nasa.gov/planetary/lunar/ap13acc.html

and for the details:
http://drushel.cwru.edu/apollo13/appF-pt4.pdf.

[3] http://encyclopedia.laborlawtalk.com/Boolean_satisfiability_prob-

lem.

[4] Mézard M., G. Parisi, R. Zecchina Science 297, Issue 5582 (2002), 812–
815.

[5] Whitesitt J. E. Boolean Algebra and Its Applications. Addison-Wesley,
Reading, Massachusetts, USA, 1961

[6] http://drushel.cwru.edu/apollo13/appF-pt4.pdf.

István Bukovics

National Directorate

General for Disaster Management

Ministry of the Interior, Hungary

e-mail: istvan.bukovics@katved.hu

Received February 15, 2006

Final Accepted March 12, 2007

