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A COMPUTER ALGEBRA APPLICATION TO
DETERMINATION OF LIE SYMMETRIES OF PARTIAL

DIFFERENTIAL EQUATIONS*

Vladimir I. Pulov, Edy J. Chacarov, Ivan M. Uzunov

Abstract. A MATHEMATICA package for finding Lie symmetries of
partial differential equations is presented. The package is designed to create
and solve the associated determining system of equations, the full set of
solutions of which generates the widest permissible local Lie group of point
symmetry transformations. Examples illustrating the functionality of the
package’s tools are given. The results of the package application to performing
a full Lie group analysis of coupled nonlinear Schrödinger equations from
nonlinear fiber optics are presented. Comparisons with earlier published
computer algebra implementations of the Lie group method are discussed.

1. Introduction. It is well known that the Lie groups of symmetry
transformations leaving a system of partial differential equations (PDEs) invariant
can be very useful in a wide range of mathematical and physical applications
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[8]. We will only mention a few of them, those with the possibility to obtain
new solutions from known ones, the symmetry reduction technique leading to
a simplification of the original system, explicit determination of group invariant
solutions and their classification, derivation of conservation laws reflecting the
underlined physical phenomenon. The key to finding the symmetry group is the
infinitesimal generator of the group—a vector field on the space of the independent
and the dependent variables. In order to provide a basis of group generators one
has to create and solve the so-called determining system of equations (DSEs).
Although the method is algorithmically straightforward, it often appears to be
formidably difficult to follow, which is primarily due to the great number of
symbolic calculations that must be performed. The operations are routine, but
nonetheless very tedious and time-consuming to do by hand. It often occurs that
hundreds of equations are manipulated while creating and solving the DSEs,
which makes essential the use of a certain computer algebra system (CAS), such
as Reduce, MATHEMATICA, Maple, etc.

The goal of this paper is to present a computer algebra implementation
of the Lie method—the MATHEMATICA package LieSymm-PDE that we have
developed in order to overcome the computational difficulties. The package is
designed to create and solve the associated DSEs. It covers the most general case
of an arbitrary system of PDEs without any restrictions on the number of the
equations, on the number of the independent and dependent variables, and as well
as on the highest order of the derivatives that may be involved. To the authors’
knowledge, other programs related to Lie symmetries have been developed in
Reduce [14], MATHEMATICA [5], Maple1 . The algorithm of LieSymm-PDE for
solving the DSEs is closely related to the solving technique of [14]. In comparison
with the “liesymm” package of Maple the package we present can be used not
only for creating the DSEs but also for solving it. LieSymm-PDE works with
less external advice to solve the DSEs than it is needed by the MATHEMATICA

program in [4].
The paper is organized as follows. In Section 2 we give a short description

of the problem. In Section 3 we explain the algorithm of LieSymm-PDE. In
Section 4 we illustrate how the tools of LieSymm-PDE work. In Section 5 we
give the results of the package application to equations from nonlinear fiber optics.
In Section 6 we discuss the general features of LieSymm-PDE in comparison with
other Lie packages.

2. Lie symmetries of PDEs: theoretical background. We are
going to give a brief outline of the Lie method using the terms and notations in [8].

1The package “liesymm” included in the standard release of Maple 10.
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Let F be a given system of l PDEs of order n for q functions u = (u1, . . . , uq) ∈
U ≡ Rq in p independent variables x = (x1, . . . , xp) ∈ X ≡ Rp:

(1) F (x, u(n)) = 0,

where u(n) denotes a point in the Euclidean space U (n) having as coordinates the
dependent variables uα and the derivatives uα

j1...js
≡ ∂uα/∂xj1 . . . ∂xjs of order

s = 1, . . . , n, α = 1, . . . , q, jν = 1, . . . , p, ν = 1, . . . , s; F = (F1, . . . , Fl). Note that
no limitations for the nonlinear properties of the left-hand sides are demanded,
i.e., F (x, u(n)) can be a nonlinear function of all its arguments. It is said that
the system (1) admits a one-parameter local Lie group of point transformations
G = {Ta|a ∈ ∆ ⊂ R, 0 ∈ ∆} with

(2) Ta =

{

x′ = f(a, x, u)
u′ = ϕ(a, x, u)

(a is the group parameter) if it has the property of being unaltered after the
transformations of the group. The admitted group is also called a group of Lie
symmetries of the considered PDEs in the sense that each solution of (1) after
the transformations of the group remains a solution. Finding the admitted Lie
groups of a system of PDEs is based on the fundamental correspondence between
the Lie groups and their Lie algebras of infinitesimal generators. The infinitesimal
generator is a first-order linear differential operator

(3) V =

p
∑

i=1

ξi(x, u)
∂

∂xi
+

q
∑

α=1

ηα(x, u)
∂

∂uα
,

where ξi(x, u) = ∂f i(0, x, u)/∂a, ηα(x, u) = ∂ϕα(0, x, u)/∂a; f = (f 1, . . ., fp),
ϕ = (ϕ1, . . . , ϕq). From a geometrical point of view, V is a tangent vector field on
Z = X ×U , which flow coincides with a one-parameter group of transformations,
that is, if the coordinates ξ = (ξ1, . . . , ξp), η = (η1, . . . , ηq) of the vector field are
given, then the group (2) can be obtained by solving the equations [Lie equation]

df

da
= ξ(f, ϕ), f|a=0 = x,

(4)

dϕ

da
= η(f, ϕ), ϕ|a=0 = u.

The infinitesimal generators of all one-parameter groups admitted by the considered
differential equations constitute a Lie algebra—a vector space supplied with a Lie
bracket operation [V1, V2] = V1V2 − V2V1.
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The milestone of the Lie method is the infinitesimal criterion that works
on the base of a special technique for prolongation of the groups and their
infinitesimal generators. Assume that the rank of the Jacobi matrix of F (x, u(n))
is l whenever the point (x, u(n)) belongs to the sub-manifold ∆F ⊂ X × U (n)

defined by (1). Then the system of PDEs (1) admits a one-parameter group
G with the infinitesimal generator V if and only if the following infinitesimal
condition holds

(5) pr(n)V
[

F (x, u(n))
]

= 0 for (x, u(n)) ∈ ∆F ,

where pr(n)V is the nth prolongation of V

(6) pr(n)V = V +

p
∑

i=1

q
∑

α=1

ζα
i

∂

∂uα
i

+ · · · +

p
∑

j1=1

· · ·

p
∑

jn=1

q
∑

α=1

ζα
j1...jn

∂

∂uα
j1...jn

.

The coefficients ζα
j1...jk

, k = 1, . . . , n depend on the functions ξ(x, u) and η(x, u)
by the recursive formulae

ζα
i = Di(η

α) −

p
∑

s=1

uα
s Di(ξ

s),

(7)

ζα
j1...jk

= Djk
(ζα

j1...jk−1
) −

p
∑

s=1

uα
j1...jk−1sDjk

(ξs),

where Di is the operator of total differentiation with respect to the variable xi

Di =
∂

∂xi
+

q
∑

α=1

uα
i

∂

∂uα
+

p
∑

j=1

q
∑

α=1

uα
ji

∂

∂uα
j

+ · · ·

+

p
∑

j1=1

· · ·

p
∑

jn−1=1

q
∑

α=1

uα
j1...jn−1i

∂

∂uα
j1...jn−1

.(8)

The equation (5) serves to determine the coefficients ξ(x, u) and η(x, u) of the
infinitesimal generators that constitute the widest Lie algebra admitted by the
system (1). If this algebra has a finite dimension r, then the corresponding Lie
symmetry group is an r-parameter group of transformations of the space Z. In
order for this group to be found one has to solve the equation (5), and then
to take some basis (V1, V2, . . . , Vr) of its solutions. By solving the Lie equation
(4) for each one of these basic infinitesimal generators, the corresponding one-
parameter groups of symmetry transformations Ta1

, Ta2
, . . . , Tar

are obtained.
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Their composition performs the general r-parameter group of transformations Ta

with the vector parameter a = (a1, a2, . . . , ar).

3. Algorithm of the package LieSymm-PDE. In order to find
the unknown coefficient functions ξi(x, u), ηα(x, u), one has to solve the equation
(5). Since the variables xi, uα, uα

j1...js
are assumed to be independent, the equation

(5) can be facilitated by equating to zero all the coefficients of the monomials
in the partial derivatives uα

j1...js
. Thus, a large number of linear homogeneous

partial differential equations are obtained, which are known as the DSEs of the
symmetry group admitted by (1). When systems of PDEs of order higher than
two are considered and the independent variables are more than about two, the
DSEs may consist of hundreds of equations. In situations like this, it is essential to
use a contemporary CAS to tackle the great number of symbolic manipulations.

The package LieSymm-PDE presented here utilizes the tools of the CAS
MATHEMATICA. It is designed to create the DSEs and to provide automatic
assistance for solving it. The algorithm flow (Fig. 1) of the package goes strictly
through the theoretical formulae in the preceding section. It involves the following
steps.

Fig. 1. Flowchart of the algorithm

Step 1. Data Input. The initially given data provide all the information
that is needed to create the DSEs. These data consist of the differential equations
(1) in their full explicit form and a detailed description of the types of the variables
used in them.
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Step 2. Basic Setup. At this step, some basic symbolic expressions are
generated. They compose a setup of symbols, rules and operators prepared
on the basis of the data input and satisfying the specific requirements of the
algorithm’s logic. We should point out two of them, those of the submanifold
∆F represented by a list of rules, and of the prolonged group generator pr(n)V
defined as an operator. They are both accomplished in full accordance with
the definitions – formulae (1), (6–8). Two other lists of variables stand for the
unknown coefficients ξi(x, u) and ηα(x, u) of the infinitesimal generator (3). At
this stage of the program they are merely p + q arbitrary functions.

Step 3. Determining Equations. The infinitesimal criterion of the Lie
group method is carried out, i.e., the prolonged infinitesimal generator pr(n)V
is applied to the functions F1, F2, . . . , Fl with the resultant expressions being
recalculated on the submanifold ∆F . Then, after equating to zero the coefficients
of the monomials in uα

j1...js
, a list of the determining equations is obtained.

Step 4. Solving procedure. At the fourth step of the algorithm a solving
procedure is started up. It consists of a repetition of special programming
modules for solving differential and algebraic equations. Each module searches for
determining equations that belong to some specific class of equations with known
solutions. If such an equation has been found, its solution is substituted for the
respective variable in the remainder of the equations. As a result, the functions
ξi(x, u) and ηα(x, u) change, getting closer to the exact explicit solution and the
number of the equations in the DSEs diminishes by those of them that have been
already solved. The modules available by the package cope with the following
five types of equations

C1x + C2 = 0, C1x + C2y = 0,

(9)

C1yx + C2 = 0, C1yxx + C2 = 0, C1yxxx + C2 = 0

(C1, C2 = const. in regard to x and y; yx ≡ ∂y/∂x, etc.). The solving process is
completed when either the number of the determining equations has been reduced
to zero, or all of the remaining equations have become unsolvable by the existing
modules.

Note that there is a possibility that the DSEs can be simplified at the
beginning of the solving procedure. This is achieved with the aid of two program-
ming tools: Rules and Hints (Fig. 1). Rules is a collection of modules for making
transformations such as for adding, subtracting, and differentiating equations.
One special module is designated to carry out a search for functionally independent
parts of the equations that, after being equated to zero, are added to the list of
the DSEs. Hints is a list of substitutions provided by the user in order to specify
the functions being sought.
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Step 5. Data Output. Data that is generated at the output consist of
the solution (ξ1, . . . , ξp, η1, . . . , ηq) that is possibly expressed by some unknown
functions and a list of equations that these functions must satisfy.

4. MATHEMATICA tools of LieSymm-PDE. The program
works in partly interactive mode allowing the user to effectively participate in the
solving process by applying pre-determined transformation rules and by giving
hints to the solutions. This is needed in view of the fact that no general solution
scheme of the DSEs is known to date. There are also user-level commands used to
display any current state of the DSEs and its solution helping the user to decide
which rules and hints to apply before each intermediate run of the package. A
usage message explains all that is needed to execute the program. For instance,
each of the original equations must be solved in regard to any variable involved –
independent, dependent, or any of the derivatives – and this single variable must
be typed for the left-hand side of the equation. The program also needs to know
the independent and the dependent variables. Firstly, based on the data input
the determining equations are created, and secondly, a solving procedure that
aims at finding the general solution of the DSEs is carried out. Note that the
package contains private context specification, which protects the objects from
getting confused with other objects defined outside the package and having the
same names.

In order to illustrate the basic tools of the package we consider, as a first
and simplest example, the heat equation

ut − uxx = 0,(10)

whose full symmetry group is well known. The function that creates the determining
system is named CreateDSE[ ]. All the initially given data are provided by
this command. Another command DetSysEqs is used to exhibit the DSEs. In
MATHEMATICA notation, for equation (10), these read (with a[1](1,0,2)[x, t, u] ≡
∂3a[1]/∂x∂u2, etc.):

CreateDSE[{u[t]},{u[x, x]},{x, t},{u}]; DetSysEqs

Eqn[1]: a[2](0,0,1)[x, t, u] == 0

Eqn[2]: a[1](0,0,2)[x, t, u] == 0

Eqn[3]: a[2](0,0,2)[x, t, u] == 0

Eqn[4]: a[2](1,0,0)[x, t, u] == 0

Eqn[5]: − a[3](0,0,2)[x, t, u] + 2a[1](1,0,1)[x, t, u] == 0
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Eqn[6]: 2a[1](0,0,1)[x, t, u] + 2a[2](1,0,1)[x, t, u] == 0

Eqn[7]: − a[1](0,1,0)[x, t, u] − 2a[3](1,0,1)[x, t, u] + a[1](2,0,0)[x, t, u] == 0

Eqn[8]: − a[2](0,1,0)[x, t, u] + 2a[1](1,0,0)[x, t, u] + a[2](2,0,0)[x, t, u] == 0

Eqn[9]: a[3](0,1,0)[x, t, u] − a[3](2,0,0)[x, t, u] == 0

The result is a system of nine differential equations for three functions that
coincide with the coefficients ξ1, ξ2 and η1 of the symmetry generator as is shown
by:

LieInfGen

ξ1 = a[1][x, t, u], ξ2 = a[2][x, t, u], η1 = a[3][x, t, u]

By the use of the LieSymm-PDE iterative function SolveDSE[ ], special solving
modules are applied repeatedly in sequence to the determining equations in order
to identify and solve those of them that match any of the pre-determined types
of equations (9) (in MATHEMATICA output a prime means differentiation):

SolveDSE[DetSysEqs]; LieInfGen

ξ1 = a[6][x, t], ξ2 = a[7][t], η1 = ua[8][x, t] + a[9][x, t]

DetSysEqs

Eqn[1]: − a[7]′[t] + 2a[6](1,0)[x, t] == 0

Eqn[2]: − a[6](0,1)[x, t] − 2a[8](1,0)[x, t] + a[6](2,0)[x, t] == 0

Eqn[3]: a[8](0,1)[x, t] − a[8](2,0)[x, t] == 0

Eqn[4]: a[9](0,1)[x, t] − a[9](2,0)[x, t] == 0

As a result, the coefficients of the infinitesimal generator are expressed by four new
functions that satisfy a smaller number of equations. Instead of trying to solve
them by hand the user can take advantage of the additional tools of LieSymm-

PDE—the commands SplitDSE[ ], DiffDSE[ ], AddDSE[ ]. They provide
automatic equivalent transformations of the DSEs that are, respectively, for
splitting up of polynomials to functionally independent terms, for differentiating
of equations, for adding and subtracting pairs of equations. By trial and error
the user decides which particular set of commands shall be applied so that more
equations can be simplified. For the considered case it is most efficient to use the
series of operators:
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SplitDSE[DiffDSE[DiffDSE[DetSysEqs]]];

SolveDSE[DetSysEqs]; DetSysEqs

Eqn[1]: a[9](0,1)[x, t] − a[9](2,0)[x, t] == 0

LieInfGen

ξ1 = ta[19][ ] + a[20][ ] + (1/2)xta[23][ ] + (1/2)xa[24][ ]

ξ2 = (1/2)t2a[23][ ] + ta[24][ ] + a[25][ ]

η1 = a[9][x, t] − (1/2)xua[19][ ] + ua[22][ ] − (1/8)x2ua[23][ ]

−(1/4)tua[23][ ]

The result obtained exactly corresponds to the full explicit solution given elsewhere,
e.g., [8]. It includes the function a[9][x, t] that satisfies the heat equation and six
other constant functions a[19][ ], a[20][ ], . . .. For the present example, the final
solution can be also obtained by a single run of the full function LieInfGen[{u[t]},
{u[x, x]}, {x, t}, {u}].

In order to demonstrate the usefulness of another user-level tool of Lie-

Symm-PDE—the function named Hints[ ], we consider as a second example
Burgers’ equation

ut − uxx − u2
x = 0.(11)

It differs from the heat equation by the nonlinear term u2
x. The symmetries of

Burgers’ equation are very similar to the symmetries of the heat equation. Despite
that, the solving modules and the transformation rules available by the package
are not enough to solve all of the determining equations—there still remain four
unsolved equations for four unknown functions:

Eqn[1]: 2a[7][t] − a[6]′[t] == 0

Eqn[2]: 2a[7][t] − a[6]′[t] − a[3](0,0,1)[x, t, u] − a[3](0,0,2)[x, t, u] == 0

Eqn[3]: −xa[7]′[t] − a[8]′[t] − 2a[3](1,0,0)[x, t, u] − 2a[3](1,0,1)[x, t, u] == 0

Eqn[4]: a[3](0,1,0)[x, t, u] − a[3](2,0,0)[x, t, u] == 0

In cases like this, it suffices that the user could derive some additional information
from the returned equations that are fed back as hints to the solving modules.
This is achieved by the special command Hints[ ], whose input consists of a
list of substitutions. For the equation at hand (11) the desired information is
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obtained by applying the command SplitDSE[AddDSE [DetSysEqs]]. One
of the sixteen equations that are retrieved is suitable for producing a hint:

a[3](0,0,1)[x, t, u] + a[3](0,0,2)[x, t, u] == 0

The hint reads Hints[{a[3] = f1[x, t]e−u + f2[x, t]}, {f1[x, t], f2[x, t]}]. The
variables put in the second curly brackets are considered by LieSymm-PDE as
new unknown functions. The determining system is then simplified by LieSymm-

PDE to:

Eqn[1]: 2eua[7][t] − eua[6]′[t] == 0

Eqn[2]: −euxa[7]′[t] − eua[8]′[t] − 2eua[10](1,0)[x, t] == 0

Eqn[3]: a[9](0,1)[x, t] + eua[10](0,1)[x, t] − a[9](2,0)[x, t] −

eua[10](2,0)[x, t] == 0

These three equations are easily solved in a fully automatic way by the help of
the existing transformation rules (a[9][x, t] is an arbitrary solution of the heat
equation):

ξ1 = ta[18][ ] + a[19][ ] + (1/2)xta[22][ ] + (1/2)xa[23][ ]

ξ2 = (1/2)t2a[22][ ] + ta[23][ ] + a[24][ ]

η1 = e−ua[9][x, t] − (1/2)xa[18][ ] + a[21][ ] −

(1/8)x2a[22][ ] − (1/4)ta[22][ ]

The result is equivalent to the coefficients of the general infinitesimal generator
admitted by Burgers’ equation given in [8].

In both examples the obtained algebras are with infinite dimension, which
is due to the inclusion of the function a[9][x, t] in the final solution. This is a clear
manifestation of the package’s capabilities to work also in infinite dimensional
cases. In the next section we present the results of the package application to a
system of nonlinear equations from fiber optics.

5. Coupled nonlinear Schrödinger equations. The package Lie-

Symm-PDE has been applied to basic models of nonlinear fiber optics [10]–[13].
As a consequence of this, a full Lie group analysis of the respective systems of
PDEs has been prepared and the optimal set of reduced equations obtained. Here
we present the results of the package application to coupled nonlinear Schrödinger



A computer algebra application to determination of Lie symmetries . . . 515

equations (CNSEs)

iAx +
ν1

2
Att + (|A|2 + h|B|2)A = 0,

(12)

iBx +
ν2

2
Btt + (|B|2 + h|A|2)B = 0

describing pulse propagation in optical fibers [1]. The functions A(t, x) and
B(t, x) are the complex electric field amplitudes (normalized) depending on the
dimensionless time t and space coordinate x. The parameter h has the following
physically relevant values: h = 2/3 for strong birefringent fibers and h = 2 for
two waves at different carrier wavelengths in two-mode fibers. The coefficients
νi, i = 1, 2 determine the dispersion regime of the two modes: normal for νi = −1
and anomalous for νi = 1. By the help of the LieSymm-PDE tools for making
equivalent transformations, without giving hints, 139 determining equations were
solved. The result consists of eight basic infinitesimal generators (A = u + iv,
B = w + is; ∂t ≡ ∂/∂t, ∂x ≡ ∂/∂x, . . .):

V1 = ∂t, V2 = ∂x, V3 = u∂v − v∂u, V4 = w∂s − s∂w,

V5 = x∂t + ν1t(u∂v − v∂u) + ν2t(w∂s − s∂w),

V6 = −t∂t − 2x∂x + u∂u + v∂v + w∂w + s∂s,

V7 = ν1ν2w∂u − u∂w + s∂v − ν1ν2v∂s,

V8 = s∂u − ν1ν2u∂s + v∂w − ν1ν2w∂v .

They compose an 8-dimensional Lie algebra admitted by the CNSEs (12) for the
case when hν1ν2 = 1. The sub-algebra built upon the first six generators applies
for arbitrary h, h = 2, 2/3 and for hν1ν2 = −1. In addition, as a consequence
of the application of the package, we give the optimal set of one-dimensional Lie
sub-algebras valid for ν1 = 1, h = ν2 = −1, which we present in a compact form
of eighteen unified cases:

(A1) V1 + εV3, ε = 0,±1, (A2) V1 + εV7, ε = ± 1,

(A3) εV1 + 2V3 + δV7, ε, δ = ±1,

(B1) εV4 + V5, ε = 0,±1, (B2) V5 + εV7, ε = ±1,

(B3) 2V4 + εV5 + δV7, ε, δ = ±1,

(C1) V2 + δV3 + εV4, ε = 0, δ = 0,±1 or ε = ±1, δ ∈ R,

(C2) V2 + ε(V3 − V4) + δV7, ε = ±1, δ ∈ R\{0} or ε = 0, δ = ±1,
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(C3) εV2 + 2V3 + δV7, εV2 + 2V4 + δV7, εV2 + V3 + V4 + δV7, ε, δ = ±1,

(D1) εV2 + δV4 + V5, ε = ±1, δ ∈ R,

(D2) εV2 + V5 + δV7, ε = ±1, δ ∈ R\{0},

(D3) εV2 + 2V4 + δV5 + σV7, ε, σ = ±1, δ ∈ R\{0},

(E1) εV3 + δV4 + V6, ε, δ ∈ R,

(E2) ε(V3 − V4) + V6 + δV7, ε ∈ R, δ ∈ R\{0},

(E3) 2V3 + δV6 + εV7, 2V4 + δV6 + εV7, V3 + V4 + δV6 + εV7,

ε = ±1, δ ∈ R\{0},

(F1) εV3 + δV4, ε = 1, δ = 0 or ε ∈ R, δ = 1,

(F2) ε(V3 − V4) + δV7, ε = 0, δ = 1 or ε = 1, δ ∈ R\{0},

(F3) 2V3 + εV7, 2V4 + εV7, V3 + V4 + εV7, ε = ±1.

By setting various possible values to the parameters ε, δ and σ, different elements
of the optimal set are obtained. Note that the optimal set found in [10] for
arbitrary h comprises only (A1), (B1), . . . , (F1) cases. The optimal set of
subalgebras can be used for explicit determination of group invariant solutions
and their classification.

6. Discussions and conclusion. We presented the MATHEMATICA

package LieSymm-PDE that we have developed for automatic determination
of Lie point symmetries of PDEs. The functions of LieSymm-PDE provide a
possibility to find the infinitesimal generator, either directly in one step, or by
taking advantage of an elaborate interactive mode. The usefulness of LieSymm-

PDE functions for making equivalent transformations and for giving hints during
the solving process has been illustrated in Section 4. After applying LieSymm-

PDE to the equations considered in [4], we come to the conclusion that in
comparison with the MATHEMATICA program described in [4] the package
LieSymm-PDE does not require a polynomial ansatz for the infinitesimals and
needs less external advice (hints) to fulfill the task. We compared the functions of
LieSymm-PDE with those available by the package “liesymm” of Maple. We note
that the LieSymm-PDE function CreateDSE for creating of the DSEs can be
used as an alternative of the Maple command “liesymm[determine]()”. We found
also that Maple does not provide tools for solving of the DSEs as the LieSymm-

PDE special functions SolveDSE, SplitDSE, DiffDSE and AddDSE do.
The method of LieSymm-PDE for solving DSEs is based on several pro-

gramming modules for dealing with some distinct types of equations. This
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method is generally allied with the approach applied in the Reduce package
[14]. Finally, it should be noted that LieSymm-PDE is open to adding new
solving modules and transformation rules so that its capabilities can be constantly
enhanced. This leads to reducing the needs of user’s hints and makes the program
flexible and self-contained. As a result new larger and more complicated systems
of PDEs become manageable.

The package has been successfully tested by a large number of PDEs.
The obtained symmetries are in full agreement with those found in literature:
in [8], for the heat equation, the Burgers’ equation and the Korteweg-de Vries
equation, in [2], for the nonlinear Schrödinger equation, in [6], for the nonlinear
Schrödinger equation with a perturbation term, in [3], for the CNSEs (12) with
additional linear terms. We used the package to perform a Lie group analysis of
different models of nonlinear fiber optics: strong [10] and weak [13] birefringent
fibers, two waves at different carrier wavelengths in two-mode fibers [10], fibers
with birefringence and stimulated Raman scattering [11], light pulses propagation
at zero-dispersion wavelength [12], and nonlinear directional couplers [13]. A
careful comparison with the earlier results in [3, 6, 7, 9] proves the effectiveness
of the package LieSymm-PDE in solving practical problems and justifies this
presentation.
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