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ALGEBRAIC COMPUTATIONS WITH HAUSDORFF
CONTINUOUS FUNCTIONS*

Roumen Anguelov

Abstract. The set of Hausdorff continuous functions is the largest set of
interval valued functions to which the ring structure of the set of continuous
real functions can be extended. The paper deals with the automation of
the algebraic operations for Hausdorff continuous functions using an ultra-
arithmetical approach.

1. Introduction. CAS typically deal with computations, operations

and manipulations of functions from the set of what is considered elementary

functions. These functions are all analytic on their domains of definition. To the

author’s best knowledge discontinuous functions have not yet been considered in

this context. In this paper we consider algebraic computations with Hausdorff

continuous (H-continuous) interval valued functions. The H-continuous functions
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are useful in representing discontinuities of real functions through interval values.

They were originally defined within the realm of Approximation Theory but have

been applied since in many other areas. In particular, recent results have shown

that they are also a powerful tool in the Analysis of PDEs since the solution of

large classes of nonlinear PDEs can be assimilated with H-continuous functions,

[6]. It was also shown recently, see [5], that the algebraic operations for continuous

functions can be extended to H-continuous functions in such a way that the

set of H-continuous functions is a commutative ring. This result is particularly

significant in view of the fact that interval structures typically do not form linear

spaces. In fact, the set of H-continuous functions is the largest set of interval

functions which is a linear space, [4]. The present paper deals with the automation

of the algebraic operations with H-continuous functions within the structure of a

functoid.

2. The algebraic operations with H-continuous functions.
The real line is denoted by R and the set of all finite real intervals by IR =

{[a, a] : a, a ∈ R, a ≤ a}. Given an interval a = [a, a] ∈ IR, w(a) = a − a

is the width of a. An interval a is called a proper interval if w(a) > 0 and a

point interval if w(a) = 0. Identifying a ∈ R with the point interval [a, a] ∈ IR,

we consider R as a subset of IR. Let Ω ⊆ R be open. We recall, [10], that an

interval function f : Ω → IR is S-continuous if its graph is a closed subset of

Ω× R. An interval function f : Ω→ IR is Hausdorff continuous (H-continuous)

if it is an S-continuous function which is minimal with respect to inclusion, that

is, if ϕ : Ω → IR is an S-continuous function, then ϕ ⊆ f implies ϕ = f . Here

the inclusion is considered in a pointwise sense. We denote by H(Ω) the set of

H-continuous functions on Ω. The following theorem states an essential property

of the continuous functions which is preserved by the H-continuity [1].

Theorem 1. Let f, g ∈ H(Ω). If there exists a dense subset D of Ω such

that f(x) = g(x), x ∈ D, then f(x) = g(x), x ∈ Ω.

H-continuous functions are also similar to the usual continuous real func-

tions in that they assume point values on a residual subset of Ω. More precisely,

it is shown in [1] that for every f ∈ H(Ω) the set Wf = {x ∈ Ω : w(f(x)) > 0} is

of first Baire category and f is continuous on Ω \Wf . Since a finite or countable

union of sets of first Baire category is also a set of first Baire category we have:
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Theorem 2. Let F be a finite or countable set of H-continuous functions.

Then the set DF = {x ∈ Ω : w(f(x)) = 0, f ∈ F} = Ω \
⋃

f∈F Wf is dense in Ω

and all functions f ∈ F are continuous on DF .

For every S-continuous function g we denote by [g] the set of H-continuous

functions contained in g, that is,

[g] = {f ∈ H(Ω) : f ⊆ g}.

Identifying {f} with f we have [f ] = f whenever f is H-continuous. The S-

continuous functions g such that the set [g] is a singleton, that is, it contains

only one function, play an important role in the sequel. In analogy with the

H-continuous functions which are minimal S-continuous functions, we call these

functions quasi-minimal. The following characterization of the quasi-minimal

S-continuous functions is an easy consequence of Theorem 1.

Theorem 3. If f is an S-continuous function on Ω which assumes point

values on a dense subset of Ω, then f is quasi-minimal S-continuous function.

The familiar operations of addition, scalar multiplication and multiplica-

tion on the set of real intervals are defined for [a, a], [b, b] ∈ I R and α ∈ R as

follows:

[a, a] + [b, b]={a + b : a∈ [a, a], b∈ [b, b]}=[a + b, a + b],

α · [a, a]={αa : a∈ [a, a]}=[min{αa, αa},max{αa, αa}],

[a, a]×[b, b]={ab :a∈ [a, a], b∈ [b, b]}=[min{ab, ab, ab, ab},max{ab, ab, ab, ab}].

Pointwise operations for interval functions are defined in the usual way:

(1) (f + g)(x) = f(x) + g(x), (α · f)(x) = α · f(x), (f × g)(x) = f(x)× g(x).

It is easy to see that the set of the S-continuous functions is closed under

the above pointwise operations while the set of H-continuous functions is not, see

[2], [4]. Hence the following result is significant.

Theorem 4. For any f, g ∈ H(Ω) and α ∈ R the functions f + g, α · f

and f × g are quasi-minimal S-continuous functions.
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P r o o f. Denote by Dfg the subset of Ω where both f and g assume point

values. Then f +g assumes point values on Dfg. According to Theorem 2 the set

Dfg is dense in Ω which in terms of Theorem 3 implies that f+g is quasi-minimal.

The quasi-minimality of α · f and f × g is proved in a similar way. �

We define the algebraic operations on H(Ω) using Theorem 4. We denote

these operations respectively by⊕, � and⊗ so that distinction from the pointwise

operations can be made.

Definition 5. Let f, g ∈ H(Ω) and α ∈ R. Then

(2) f ⊕ g = [f + g], α� f = [α · f ], f ⊗ g = [f × g].

Theorem 6. The set H(Ω) is a commutative algebra with respect to the

operations ⊕, � and ⊗ given in (2).

The proof is partially discussed in [5] and, since it involves standard

techniques, will be omitted here.

3. The concept of ultra-arithmetical functoid. Functoid is

a structure resulting from the ultra-arithmetical approach to the solution of

problems in function spaces. The aim of the ultra-arithmetic is the development

of structures, data types and operations corresponding to functions for direct

digital implementation. On a digital computer equipped with ultra-arithmetic,

problems associated with functions will be solvable, just as now we solve algebraic

problems [8]. Ultra-arithmetic is developed in analogy with the development of

computer arithmetic.

LetM be a space of functions and let M be a finite dimensional subspace

spanned by ΦN = {ϕk}
N
k=0. Every function f ∈ M is approximated by τN (f) ∈

M . The mapping τN is called rounding (in analogy with the rounding of numbers)

and the space M is called a screen of M. Every rounding must satisfy the

requirement (invariance of rounding on the screen): τN(f) = f for every f ∈M .

Every function f =
∑N

i=0 αiϕi ∈ M can be represented by its coefficient vector

ν(f) = (α0, α1, . . . , αN ). Therefore the approximation of the functions in M is

realized through the mappingsM
τN−→M

ν
←→ KN+1, where K is the scalar field

ofM (i.e. K = R or K = C). Since ν is a bijection we can identify M and KN+1

and consider only the rounding τN .
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In M we consider the operations addition (+), scalar multiplication (.),

multiplication of functions (×) and integration (
∫

) defined in the conventional

way. By the semimorphism principle τN induces corresponding operations in M :

f b g = τN (f b g) , b ∈ {+, .,×};

∫

f = τN

(∫

f

)

.

The structure (M, + , . , × ,

∫

) is called an (ultra-arithmetical) functoid [9].

4. A functoid in H(Ω). To simplify the matters we will consider the

function space of all bounded H-continuous functions on Ω = (−1, 1). Further-

more, since we will often use a shift of the argument, we assume that all functions

are produced periodically (period 2) over R. Hence we denote the space under

consideration by Hper(−1, 1). All algebraic operations on Hper(−1, 1) are consi-

dered in terms of Definition 5. For simplicity we denote them as the operations

for reals. Namely, addition is “+” and a space is interpreted as multiplication,

where the context shows whether this is a scalar multiplication or a product

of functions. In particular, note that indicating the argument of a function in

a formula does not mean pointwise operation. Denote by s1 the H-continuous

function given by

s1(x) =







x, if x ∈ (−1, 1),

[−1, 1], if x = ±1;

and produced periodically over the real line. Since the integrals of s1 and s1 are

equal over any interval the integral of s1 is a regular real function. We construct

iteratively the sequence of periodic splines s1, s2, s3, . . . using

sj+1 =

∫

sj(x)dx + c,

∫ 1

−1
sj+1(x)dx = sj+2(1)− sj+2(−1) = 0.
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The first few splines after s1 are given on the interval [−1, 1] as follows

s2(x) =
x2

2!
−

1

6
,

s3(x) =
x3

3!
−

1

6
x ,

s4(x) =
x4

4!
−

1

6

x2

2!
+

7

360
,

s5(x) =
x5

5!
−

1

6

x3

3!
+

7

360
x .

It should be emphasized that the above splines are periodic functions over R.

Furthermore, for any j > 2 the spline sj is a j−2 times continuously differentiable

function on R and the j − 1 derivative is discontinuous only at the odd integers.

Theorem 7. Let f ∈ Hper(−1, 1) be given. Assume that there exists a

finite set Λ = {λ1, λ2, . . . , λm} ⊂ (−1, 1] such that f assumes real values and is

p times differentiable on (−1, 1] \Λ with the pth derivative in L2(−1, 1). Then f

has a unique representation in the form

(3) f(x) = a0 +

m
∑

l=1

p
∑

j=1

ajlsj(x + 1− λl) +

∞
∑

k=−∞
k 6=0

bke
ikπx,

where
∞
∑

k=−∞
k 6=0

bke
ikπx is p times differentiable with its pth derivative in L2(−1, 1).

Furthermore, the coefficients are given by:

a0 =
1

2

∫ 1

−1
f(x)dx

ajl =
1

2

(

dj−1f

dxj−1
(λl − 0)−

dj−1f

dxj−1
(λl + 0)

)

,
j = 1, . . . , p

l = 1, . . . ,m

bk =
1

2(ikπ)p

∫ 1

−1

dpf(x)

dxp
e−ikπxdx , k = ±1,±2, . . .

The proof is carried out by considering the Fourier series of the function

g(x) = f(x)− a0 −
m
∑

l=1

p
∑

j=1

ajlsj(x + 1− λl)
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and uses standard techniques. Hence it will be omitted. It should be noted that

expansion (3) is unique for a given value of p but for different values of p one may

have different representations of the function f in the form (3).

Function f is approximated by

(4) ρNp(f ;x) = a0 +
m
∑

l=1

p
∑

j=1

ajlsj(x + 1− λl) +
N
∑

k=−N

k 6=0

bke
ikπx

with a rounding error

|f(x)− ρNp(f ;x)| =

∣

∣

∣

∣

∣

∣

∑

|k|>N

bke
ikπx

∣

∣

∣

∣

∣

∣

≤
∑

|k|>N

|bk|

≤





∑

|k|>N

(kπ)2p|bk|
2





1
2




∑

|k|>N

1

(kπ)2p





1
2

(5)

≤







1

2

∫ 1

−1

(

dpf(x)

dxp

)2

dx−

(

m
∑

l=1

apl

)2

−

N
∑

k=−N

k 6=0

(kπ)2p|bk|
2







1
2
(

2

(2p−1)π2pN2p−1

)
1
2

= o

(

1

Np− 1
2

)

Motivated by the above we consider a screen in Hper(−1, 1) comprising

the subspace M spanned by the basis

{s0(x)} ∪ {sj(x + 1− λl) : j = 0, 1, . . . , p, l = 1, . . . ,m}∪

∪{eikπx : k = 0,±1, . . . ,±N},

where p,m,N ∈ N and {λ1, λ2, . . . , λm} ⊂ (−1, 1] are parameters with arbitrary

but fixed values. Here s0 is the function which is constant 1 on R. Defining a

rounding from Hper(−1, 1) to M is still an open problem. However, for functions

of the kind described in Theorem 7 the rounding is defined through ρNp. Further-

more, to define a functoid we only need to know how to round the functions

resulting from operations in M . For this purpose the rounding ρNp is sufficient.



450 Roumen Anguelov

Naturally, since M is a subspace it is closed under the operations addition and

scalar multiplication. Furthermore, to define multiplication of functions and

integration we only need to define these operations on the elements of the basis.

The products of the functions in the basis are given by

sq1(x + 1− λl1)sq2(x + 1− λl2)

=

q1+q2
∑

j=q1

(

j − 1

q1 − 1

)

sq1+q2−j(1 + λl1 − λl2)sj(x + 1− λl1)(6)

+

q1+q2
∑

j=q2

(

j − 1

q2 − 1

)

sq1+q2−j(1− λl1 + λl2)sj(x + 1− λl2)

eik1πxeik2πx = ei(k1+k2)πx(7)

sq(x + 1− λl)e
inπx

=

p
∑

j=q

(−1)nei(λl−1)π

(

j − 1

q − 1

)

(inπ)j−qsj(x + 1− λl) +

∞
∑

k=−∞
k 6=0

βkeikπx(8)

where in the formula (8) the coefficients βk are given by

βk =
(−1)k−n−1np−q

kp(iπ)q

q−1
∑

r=0

(

p

r

)(

n

k − n

)q−r

if k 6= 0, n

βn =

(

p

q

)

(inπ)−q

For the respective integrals we have

∫

sj(x)dx = sj+1(x) , j = 1, . . . , p(9)

∫

eikπxdx =
1

ikπ
eikπx , k = 0,±1, . . . ,±N(10)

Obviously in the formulas (6)–(9) we obtain splines sj with j > p and exponents
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eikπx with |k| > N which need to be rounded. Using that

sj(x + 1− λl) =

∞
∑

k=−∞
k 6=0

(−1)k−1ei(1−λl)π

(ikπ)j
eikπ

all that needs to be rounded is a Fourier series which is done by truncation. Note

that each time we truncate a Fourier series of a function which is at least p times

differentiable with its pth derivative in L2(−1, 1). Hence the uniform norm of the

error is o
(

1

N
p− 1

2

)

. The integration of s0, when it arises in practical problems,

should be handled with special care since
∫

s0(x)dx = s1(x) holds only on (−1, 1).

5. Applications. As an illustrative example we consider the wave

equation in the form

utt(x, t)− uxx(x, t) = φ(x, t)(11)

u(x, 0) = g1(x), ut(x, 0) = g2(x)(12)

with periodic boundary conditions at x = −1 and x = 1, assuming that g1, g2,

φ or some of their space derivatives may be discontinuous but the functions can

be represented as a spline-Fourier series (3) of the space variable. More precisely,

for the function φ we assume a representation of the form

(13) φ(x, t) = α0(t) +

m
∑

l=1

p
∑

j=1

1
∑

δ=−1

αljδ(t)sj(x+δt+1−αl) +

N
∑

k=−N

k 6=0

βk(t)e
ikπx

The solution is

u(x, t) =
1

2






g1(x + t) + g1(x− t) +

∫ x+t

x−t

g2(θ)dθ +

∫∫

G(x,t)

φ(y, θ)dydθ






,

where G(x, t) is the triangle in R
2 with vertices (x − t, 0), (x + t, 0) and (x, t).

Note that the above form of the solution is an explicit representation of the well

known property that the value of the solution at (x, t) depends only on the values

of g1 and g2 on the line segment connecting (x − t, 0) and (x + t, 0) and on the

values of φ in the triangle G(x, t). The essential part of the above computation
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is evaluating the integral over G(x, t). For that purpose we need to assume some

sort of representation of the coefficients in (13) as elementary functions of t. For

simplicity we assume here that they are polynomials of t. Then the integral over

G(x, t) is evaluated through the following formulas:

∫∫

G(x,t)

θq

q!
sj(y)dydθ = sj+q+2(x+t)+(−1)qsj+q+2(x−t)−2

q
∑

l=0
l−even

tq−l

(q−l)!
sj+l+2(x)(14)

∫∫

G(x,t)

θq

q!
sj(y+θ)dydθ =

q+1
∑

l=0

(

−
1

2

)l
tq+1−l

(q+1−l)!
sj+l+1(x+t)−

(

−
1

2

)q+1

sj+q+2(x−t)(15)

∫∫

G(x,t)

θq

q!
sj(y−θ)dydθ =

(

1

2

)q+1

sj+q+2(x+t)−

q+1
∑

l=0

(

1

2

)l
tq+1−l

(q+1−l)!
sj+l+1(x−t)(16)

∫∫

G(x,t)

θq

q!
eikπydydθ=

1

(ikπ)q+2






eikπ(x+t)+(−1)qeikπ(x−t)−2

q
∑

l=0
l−even

tq−l

(ikπ)q−l(q−l)!
eikπx






(17)

= 2
∞
∑

l=0
l−even

(ikπ)l tq+l+2

(q+l+2)!
eikπx

Hence the solution is obtained in the form

(18) u(x, t) = a0(t) +
m
∑

l=1

p
∑

j=1

1
∑

δ=−1

aljδ(t)sj(x+δt+1−αl) +
N
∑

k=−N

k 6=0

bk(t)e
ikπx

where all coefficients are polynomials of t.

Let us consider the solution of the problem (11–12) where

g1(x) = 0.05 + 0.1s1(x + 0.75) − 0.1s1(x + 1.25)(19)

(a square wave, see Fig. 1)

g2(x) = s1(x)(20)

φ(x, t) = ts1(x)(21)

Using the above method the solution is obtained in the form (18) and it is plotted

on Fig. 2. One can observe the accurate representation of the discontinuities of
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the solution and its derivatives.

−1 −0.5 0 0.5 1
−0.1

0

0.1

0.2

0.3

0.4

x

u

Fig. 1. Function g1 in (19). Fig. 2. The exact solution of (11)–(12)
with data given in (19)–(21).

When the right hand side of the equation depends on u, one can use the

techniques derived above to establish an iterative procedure converging to the

exact solution. For example, for the equation

utt(x, t)− uxx(x, t) = ρ(t)u(x, t) + φ(x, t)

the following iterative procedure can be used:

(22) u(r+1) = (1− λ)u(r) + λ






g +

1

2

∫∫

G(x,t)

ρu(r)






, r = 0, 1, 2, . . . ,

where

g(x, t) =
1

2






g1(x + t) + g1(x− t) +

∫ x+t

x−t

g2(θ)dθ +

∫∫

G(x,t)

φ(y, θ)dydθ






.

Naturally, successive iterations through (22) will produce functions sj with large

indexes. The obtained expressions can be simplified using the rounding discussed

in the preceding section.
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