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A RELATION BETWEEN THE WEYL GROUP W (E8) AND

EIGHT-LINE ARRANGEMENTS ON A REAL PROJECTIVE

PLANE*

Tetsuo Fukui, Jiro Sekiguchi

Abstract. The Weyl group W (E8) acts on the configuration space of
systems of labelled eight lines on a real projective plane. With a system of
eight lines with a certain condition, a diagram consisting of ten roots of the
root system of type E8 is associated. We have already shown the existence
of a W (E8)-equivariant map of the totality of such diagrams to the set of
systems of labelled eight lines. The purpose of this paper is to report that
the map is injective.

1. Introduction. We shall discuss simple eight-line arrangements on a

real projective plane. Classifications of simple arrangements of six lines and seven
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lines are well-known. In fact, it is proved by direct computation that there are

eleven kinds of adjacent relations among polygons for seven-line arrangements

(cf. [7]). This fact is in accord with what was described in Grünbaum’s book

[9], Chapter 18, namely, it is shown by Cummings and White (cf. [2], [3], [15])

that there are eleven different classes of non-equivalent seven-line arrangements

in a real projective plane. The second author of this paper studied in detail the

relationship between seven-line arrangements and the root system of type E7 (cf.

[11]). Let ∆(E7) be the root system of type E7. In Sekiguchi-Tanabata [13] (see

also [11]), the notion of a tetrahedral set is introduced as that consisting of ten

roots modulo sign in ∆(E7) with a certain condition. Let T be the totality of

tetrahedral sets. Then W (E7) acts on T in a natural manner. Let P7 be the set of

connected components of seven-line configuration space. The following theorem

is shown in [13], [11].

Theorem 1.

(i) The set T is decomposed into fourteen S7-orbits.

(ii) There is a W (E7)-equivariant injective map of T to P7.

By this theorem, we have fourteen S7-orbits in f(T )(⊂ P7). These

fourteen S7-orbits are called types A, B1, B2, B3, B4, B5, C1, C2, C3, C4,

D1, D2, D3, D4 (cf. [13], [11]). Among the seven-line arrangements of the

fourteen types A, B1, . . . , D4, the seven-line arrangements of type C2 and those

of type D2 are equivalent and also the seven-line arrangements of type C4, those

of type D1 and those of type D4 are equivalent. As a consequence, we find that

seven-line arrangements of types C2 and D2 (or those of C4, D1, and D4) are not

distinguished by adjacent relations among polygons and that there is a total of

eleven kinds of seven-line arrangements from the systems of labelled seven lines

of the fourteen types A, B1, . . . , D4 distinguished by adjacent relations among

polygons.

In this paper, we shall study a relationship between eight-line arrange-

ments on a real projective plane and the root system of type E8 on the same

analogy of seven-line case. We have already studied simple eight-line arrange-

ments in [4], [5], [6], [7], [8] and the references there. The theme treated in this

paper is, among other things, related with the conjecture in [4].

The Weyl group W (E8) of type E8, as will be defined in Section 2, acts

on the configuration space of labelled eight lines with some conditions on a real

projective plane. This configuration space is identified with an affine open subset
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S of R8. Let P8 be the totality of connected components of S. Then W (E8) also

acts on P8 (cf. §3). On the other hand, to each system of labelled eight lines,

with some conditions, a diagram consisting of ten circles (roots in a root system

of type E8) analogous to a Dynkin diagram [4] is associated. Such the set and the

diagram are called 8LC set and 8LC diagram, as will be introduced in Section 4.

Let LC8 be the totality of 8LC sets. We have already shown [8] the existence of

a W (E8)-equivariant map f of LC8 to P8 (cf. §5).

The purpose of this paper is to report that the map f is injective. Our

proof for this statement is deeply indebted to computation by computer and

unfortunately not theoretical. At any rate, this implies that simple eight-line

arrangements contained in connected components of f(LC8) ⊂ P8 are described

in terms of the root system ∆(E8). If f is surjective, the W (E8)-structure of P8

is described in terms of the root system ∆(E8) completely.

The first step in proving this statement is to determine all the represen-

tatives of S8-orbits of LC8 by using symbolic computation. As a result, there

are 2160 S8-orbits of LC8. Let An (n = 1, . . . , 2160) be the representatives of

S8-orbits. The second step to the proof is to determine wn ∈ W (E8) satisfying

wn ·U = An (n = 2, . . . , 2160) where U is the S8-orbit of the remarkable diagram

described in our previous paper [8]. The first and second step will be explained

in Section 6. The third step is to determine the labelled eight lines of f(An)

by operating wn on f(U) successively. As a result, we conclude that systems

of labelled eight lines contained in f(An)(n 6= 1) are not equivalent to those

contained in f(U) and the injectivity of f is proved in Section 7.

2. Root system of type E8. Let E be an 8-dimensional Euclidean

space with an inner product 〈·, ·〉 and an orthonormal basis {ej; 1 ≤ j ≤ 8}. We

define the following 120 vectors of E:

(1)

t1 =
1

2

8
∑

i=1

ei

r1j = t1 − ej−1 − e8 (1 < j ≤ 8)
rij = ei−1 − ej−1 (1 < i < j ≤ 8)
r1jk = −ej−1 − ek−1 (1 < j < k ≤ 8)
rijk = t1 − ei−1 − ej−1 − ek−1 − e8 (1 < i < j < k ≤ 8)
ti = −ei−1 − e8 (1 < i ≤ 8)
t1j = ej−1 − e8 (1 < j ≤ 8)
tij = t1 − ei−1 − ej−1 (1 < i < j ≤ 8)
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The totality ∆(E8) of vectors ±ti,±tij,±rij ,±rijk forms a root system of type

E8 [4]. It is clear that the set {r12, r123, r23, r34, r45, r56, r67, r78} can serve as a

system of positive roots; its Dynkin diagram is given as:

r

r r r r r r

123

12 23 34 45 56 67 r78

Let sij, sijk be the reflections on E with respect to rij, rijk and let τi, τij

be the reflections on E with respect to ti, tij (cf. [4], [8]). We note here that the

action of reflection sij (i, j = 1, 2, . . . , 8) causes transposition between the indices

i and j on ∆(E8). The group generated by the reflections sij, sijk, τi, τij is nothing

but the Weyl group W (E8) of type E8. In the sequel, the symmetric group S8 is

identified with the subgroup of W (E8) generated by sij unless otherwise stated.

3. Systems of labelled eight lines on a real projective plane.
In this section, we first introduce a W (E8)-action on the set of systems of labelled

eight lines on a real projective plane.

Let (l1, l2, . . . , l8) be a system of labelled eight lines on P2(R). We give

conditions on l1, l2, . . . , l8:

I. The eight lines l1, l2, . . . , l8 are mutually different.

II. No three of l1, l2, . . . , l8 intersect at a point.

III. There is no conic tangent to any six of l1, l2, . . . , l8.

IV. Let P1,P2, . . . ,P8 be the dual points to l1, l2, . . . , l8. Then there is no cubic

curve which passes through all of P1,P2, . . . ,P8 and which has a singularity

at one of the eight points.

The system (l1, l2, . . . , l8) defines a simple eight-line arrangement in the

sense of Grünbaum [9] if the lines l1, l2, . . . , l8 satisfy the conditions I, II.

We define p-gons for the system of labelled eight lines (lj)1≤j≤8. Each

connected component of P2(R) − ∪8
j=1lj is called a polygon. If it is surrounded

by p lines, it is called a p-gon.

The totality of systems of labelled eight lines on P2(R) with conditions

I, II forms the configuration space P(2, 8); the space P(2, 8) is defined by

P(2, 8) = GL(3,R)\M ′(3, 8)/(R×)8,
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where M ′(3, 8) is the set of 3 × 8 real matrices of which no 3-minor vanishes.

On the other hand, the totality of systems of labelled eight lines on P2(R) with

conditions I, II, III, IV forms a subset of P(2, 8) which we denote by P0(2, 8).

Both P(2, 8) and P0(2, 8) are affine open subsets of R8. Permutations on the

eight lines l1, l2, . . . , l8 induce a biregular S8-action on P(2, 8) (and also that on

P0(2, 8)). Let P8 be the set of connected components of P0(2, 8). It is stressed

here that the S8-action on P0(2, 8) is naturally extended to a birational W (E8)-

action (cf. [10], [12]). The W (E8)-action on P0(2, 8) naturally induces that on

P8.

We are going to define the action of W (E8) on P0(2, 8) in a concrete

manner. Let (lj)1≤j≤8 be a system of labelled eight lines. We assume that lj is

defined by

(2) lj : a1jξ + a2jη + a3jζ = 0,

where (ξ : η : ζ) is a homogeneous coordinate of P2(R). For the system (lj), we

define a 3 × 8 matrix X = (a1, a2, . . . , a8) where aj =





a1j

a2j

a3j



.

By a projective linear transformation and scale ambiguity of (2), we may

rewrite X to the following form

(3)





1 0 0 1 1 1 1 1
0 1 0 1 x1 x2 x3 x4

0 0 1 1 y1 y2 y3 y4



 .

The matrix defined by (3) is called the normal form of X and written by N(X)

hereafter.

By the argument above, it is possible to choose as a representative of any

element of P0(2, 8) a matrix of the form (3). Therefore P0(2, 8) is regarded as a

quasi-affine subset of R8 by the correspondence

(4)





1 0 0 1 1 1 1 1
0 1 0 1 x1 x2 x3 x4

0 0 1 1 y1 y2 y3 y4



 −→ (x1, x2, x3, x4, y1, y2, y3, y4).

We introduce the following eight birational transformations σ1, . . . , σ7, σ0

on (x, y)-space (cf. [4]):
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σ1 : (x1, x2, x3, x4, y1, y2, y3, y4) −→

(

1

x1
,

1

x2
,

1

x3
,

1

x4
,
y1

x1
,
y2

x2
,
y3

x3
,
y4

x4

)

σ2 : (x1, x2, x3, x4, y1, y2, y3, y4) −→ (y1, y2, y3, y4, x1, x2, x3, x4)

σ3 : (x1, x2, x3, x4, y1, y2, y3, y4) −→ (x′
1, x

′
2, x

′
3, x

′
4, y

′
1, y

′
2, y

′
3, y

′
4)

σ4 : (x1, x2, x3, x4, y1, y2, y3, y4) −→

(

1

x1
,
x2

x1
,
x3

x1
,
x4

x1
,

1

y1
,
y2

y1
,
y3

y1
,
y4

y1

)

(5)

σ5 : (x1, x2, x3, x4, y1, y2, y3, y4) −→ (x2, x1, x3, x4, y2, y1, y3, y4)

σ6 : (x1, x2, x3, x4, y1, y2, y3, y4) −→ (x1, x3, x2, x4, y1, y3, y2, y4)

σ7 : (x1, x2, x3, x4, y1, y2, y3, y4) −→ (x1, x2, x4, x3, y1, y2, y4, y3)

σ0 : (x1, x2, x3, x4, y1, y2, y3, y4) −→

(

1

x1
,

1

x2
,

1

x3
,

1

x4
,

1

y1
,

1

y2
,

1

y3
,

1

y4

)

,

where

x′
j =

xj − yj

1 − yj
, y′j =

yj

yj − 1
, j = 1, 2, 3, 4.

Note that σj corresponds to the transposition of lines lj and lj+1 (1 ≤

j ≤ 8) and that the correspondence

s123 −→ σ0, sj−1,j −→ σj−1 (j = 2, . . . , 8)

induces a surjective homomorphism pW (E8) of W (E8) to the group W̃ (E8) ge-

nerated by σ0, σ1, . . . , σ7. In the sequel, we frequently identify g ∈ W (E8) with

pW (E8)(g) and subgroups of W (E8) with their images by pW (E8) for simplicity.

We are now going to identify the space P0(2, 8) with a subset of R8

precisely. Let X = (v1v2v3v4v5v6v7v8) be the matrix defined in (3). First put

Rijk = det(vivjvk) (1 ≤ i < j < k ≤ 8). Clearly R123, R124, R134, R23k (k =

4, 5, 6, 7, 8) are constants but the remaining Rijk are polynomials of x, y. More-

over we take the polynomials Tij (1 ≤ i < j ≤ 8) and Tj (1 ≤ j ≤ 8) defined in

[8].

Then the following lemma holds (cf. [8]).

Lemma 1. Let l1, l2, . . . , l8 be the lines defined from X in (3).

(1) If Rijk 6= 0 for all i, j, k, then the condition I and II are satisfied.
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(2) If Tij 6= 0 for all i, j, then the condition III is satisfied.

(3) If Tj 6= 0 for all j, then the condition IV is satisfied.

In virtue of Lemma 1, we find that the set P0(2, 8) is identified with the

set

{(x, y) ∈ R4 ×R4; DR,T (x, y) 6= 0},

where DR,T (x, y) is the product of all the polynomials Rijk, Tij , Tj . It is clear

that W (E8) acts on P0(2, 8) biregularly.

4. 8LC sets and 8LC diagrams for the root system of type
E8. In next section, we will explain a relationship between the configuration

space P0(2, 8) and the root system of type E8. For this purpose, we first introduce

the notions of 8LC sets and 8LC diagrams for the root system of type E8.

Definition 1 (cf. [4]). Let ai(i = 1, 2, . . . , 8) and b1, b2 be roots of ∆(E8).

Then the set

(6) A = {ai; i = 1, 2, . . . , 8} ∪ {b1, b2}

is called an 8LC(= 8 lines configuration) set if the following conditions hold:

(7)

(i) 〈ai, aj〉 6= 0 if and only if i − j ≡ 0 or ± 1 mod 8.

(ii) 〈b1, b2〉 = 0.

(iii.1) 〈ai, b1〉 6= 0 if and only if i = 1.

(iii.2) 〈ai, b2〉 6= 0 if and only if i = 5.

We would like to visualize each 8LC set by associating a diagram (ana-

logous to a Dynkin diagram). Let A = {ai; i = 1, . . . , 8} ∪ {b1, b2} be an 8LC

set. Then an 8LC diagram for A is a figure consisting of ten circles attached with

roots of A and segments constructed in Figure 1.

For an 8LC set A = {ai; i = 1, . . . , 8} ∪ {b1, b2}, we put

(8) Ã = {±ai; i = 1, . . . , 8} ∪ {±b1,±b2}

and call it an extended 8LC set. Let A
′ be also an 8LC set. Then A and A

′ are

equivalent if and only if Ã = Ã
′. In this case, we always identify an 8LC diagram

for A and that for A
′ for simplicity.
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b1

a2

a3

a4

a1 a8

a7

a6a5

b2

Fig. 1. 8LC diagram

The following lemma is shown by a direct computation.

Lemma 2 (cf. [8]).

If an 8LC set A contains {r12, r123, r23, r34, r45, r56, r67, r78} (these form

a set of simple roots of ∆(E8)), then Ã coincides with

(9) {±r12,±r123,±r23,±r34,±r45,±r56,±r67,±r78,±t18,±t8}.

In virtue of this lemma, the classification of 8LC sets is essentially reduced

to that of fundamental systems of roots of ∆(E8) and this is well-known. Hence

we get

Proposition 1. Let A and A
′ be 8LC sets. Then there exists w ∈ W (E8)

such that w · Ã = Ã
′.

Let LC8 be the set of extended 8LC sets. We have already shown the

existence of a W (E8)-equivariant map f of LC8 to P8. The purpose of this paper

is to show that the map f is injective.

5. The map of LC8 to P8. In this section, we discuss the relationship

between LC8 and P8. For this purpose, we consider the system of labelled eight

lines (l01, l
0
2, . . . , l

0
8) defined by the 3 × 8 matrix
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(10) X0 =













1 0 0 1 1 1 1 1

1 1 0 −
27

10
−9

3

5
−

17

10
−

3

2

1 0 1 12 4
9

5

53

10

21

10













.

This system (l01, l
0
2, · · · , l08) is remarkable in the sense that there is no hexagon

for any system of labelled six lines constructed from (l01, l
0
2, . . . , l

0
8) by taking off

two lines and then it is clear that the system of (l01, l
0
2, . . . , l

0
8) satisfy with all the

conditions I, II, III, and IV. We denote by AE8 the system of labelled eight lines

(l01, l
0
2, . . . , l

0
8) which is illustrated by Figure 2.

l1 l2

l3

l4

l5

l6
l7

l8

0

0 00

0

0

0

0

Fig. 2. The remarkable system of labelled eight lines

From the eight lines in Figure 2, we obtain ten triangles (Trnk) (k =

1, 2, . . . , 10) surrounded by the three lines given in Table 1. We consider corres-

pondence of ten triangles (Trnk) (k = 1, 2, . . . , 10) to ten roots in Table 1.

Remark 1. The set U = {r123, r146, r158, r167, r257, r268, r345, r378, r478,

r568} corresponding to triangles (Trnk) (k = 1, 2, . . . , 10) in Table 1 is an 8LC

set. In particular, the correspondence

r568 −→ a1 r268 −→ a2 r345 −→ a3 r167 −→ a4

r146 −→ a5 r378 −→ a6 r478 −→ a7 r123 −→ a8

r158 −→ b1 r257 −→ b2

induces an 8LC diagram for U.

Put

(11) g1 = s16s38s57τ24, g2 = s18s27s45τ36, g3 = s23s123s45s145s67s167τ8τ18.
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Table 1. Ten triangles

(Trn1) l01l
0
2l

0
3 r123

(Trn2) l01l
0
4l

0
6 r146

(Trn3) l0
1
l0
5
l0
8

r158

(Trn4) l0
1
l0
6
l0
7

r167

(Trn5) l0
2
l0
5
l0
7

r257

(Trn6) l0
2
l0
6
l0
8

r268

(Trn7) l03l
0
4l

0
5 r345

(Trn8) l03l
0
7l

0
8 r378

(Trn9) l0
4
l0
7
l0
8

r478

(Trn10) l0
5
l0
6
l0
8

r568

Then g1, g2, g3 generate the isotropy subgroup IsoW (E8)(Ũ) of Ũ in W (E8), where

Ũ is the extended 8LC set of U. In particular, IsoW (E8)(Ũ) ' (Z2)
3. Note that

g3 is the generator of the center of W (E8).

Let CAE8 be the connected component of P8 containing AE8. In the paper

[8], we have proved that any g ∈ IsoW (E8)(U) leaves the set CAE8 invariant,

namely, gj · CAE8 = CAE8 (j = 1, 2, 3), where gj is defined in (11). As a

consequence, we have the following theorem.

Theorem 2 (cf. [8]). Let f be the map of LC8 to P8 defined by f(g ·U) =

g · CAE8 . Then f is a W (E8)-equivariant map of LC8 to W (E8) · CAE8 .

6. S8-orbits of the totality of 8LC sets. In order to show that

the W (E8)-equivariant map f of LC8 to P8 is injective, we determine all the

representatives of S8-orbits of LC8.

Lemma 3. There are 2160 S8-orbits of LC8.

Ou t l i n e o f p r o o f. We explain the algorithm employed here to deter-

mine all the representatives of S8-orbits of LC8. Let

(12) R = (R1, R2, R3, R4, R5, R6, R7, R8, R9, R10)

be a row vector consisting of roots of ∆+ as in (1) such that {R1, R2, . . . , R10} is



A Relation between the Weyl Group W (E8) and Eight-line Arrangements 413

an 8LC set by the correspondence

(13)
R1 −→ a1 R2 −→ a2 R3 −→ a3 R4 −→ a4

R5 −→ a5 R6 −→ a6 R7 −→ a7 R8 −→ a8

R9 −→ b1 R10 −→ b2.

We first introduce an ordering on the totality of such row vectors as R.

We number all the positive roots of ∆+ in the following manner:

(14)
(R[1], R[2], . . . , R[120])
= (t1, t2, . . . , t8, t12, t13, . . . , t78, r12, r13, . . . , r78, r123, r124, . . . , r678).

For example, R[9] = t12, R[65] = r123. We denote by n(r) the number of a

positive root r such that r = R[n(r)] by (14).

Let (n1, n2, . . . , n10) and (n′
1, n

′
2, . . . , n

′
10) be 10-row vectors consisting of

integers. Then we define

(n1, n2, . . . , n10) ≺ (n′
1, n

′
2, . . . , n

′
10),

if and only if nj = n′
j (1 ≤ j ≤ k − 1), nk < n′

k and (n1, n2, . . . , n10) =

(n′
1, n

′
2, . . . , n

′
10) if and only if ni = n′

i (i = 1, . . . , 10). Let R = (R1, R2, . . . , R10),

R
′ = (R′

1, R
′
2, . . . , R

′
10) be row vectors consisting of ten roots. Then R ≺ R

′ if

and only if

(

n(R1), n(R2), . . . , n(R10)) ≺ (n(R′
1), n(R′

2), . . . , n(R′
10)

)

.

In this way, we define an order in the set of row vectors as R.

Let U be an S8-orbit of LC8. Then we take R = (R1, R2, . . . , R10) with

the conditions

(1) {R1, R2, . . . , R10} ∈ U .

(2) If Ã = {±R′
1,±R′

2, . . . ,±R′
10} is any element of U (R′

i ∈ ∆+) then

R � (R′
1, R

′
2, . . . , R

′
10).

It is not obvious whether the row vector R is uniquely determined by U or not.

(In fact, we will explain later that there are four candidates of it.) At any rate,

we write the row vector R defined above for R(U) for a moment.

With the help of computer algebra system Mathematica, we determine

the row vector R(U) for any S8-orbit U of LC8.
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At this moment, we need a comment. Let A = {R1, R2, . . . , R10} be an

8LC set (cf. (13)) and let U be the S8-orbit of A. Then there are four different

row vectors

(15)

R
(1) = (R1, R2, R3, R4, R5, R6, R7, R8, R9, R10),

R
(2) = (R1, R8, R7, R6, R5, R4, R3, R2, R9, R10),

R
(3) = (R5, R4, R3, R2, R1, R8, R7, R6, R10, R9),

R
(4) = (R5, R6, R7, R8, R1, R2, R3, R4, R10, R9).

These come from the symmetry of up and down and that of left and right of 8LC

diagram. Possibly the S8-orbits of R
(1),R(2),R(3),R(4) are different in spite that

the corresponding 8LC set is A. This is the reason why R(U) is not uniquely

determined by U . Moreover, R
(1),R(2),R(3),R(4) are identified in the course of

our computation.

As a result, we conclude that there exist 2160 S8-orbits Un (n = 1, . . . ,

2160). Actually we obtained 4× 2160 row vectors which are of form R(U). Only

some of 2160 representatives are given in Table 2 since all the data is very huge.

The first column in Table 2 stands for the classified number of the S8-orbits and

second column stands for the concrete representative of the S8-orbit of LC8. �

Remark 2. We do not know an efficient method constructing S8-orbits

of LC8 other than exhaustive trial method. It is convenient for the calculation

to use the following property. Since S8 acts on U and since S8 acts on the sets

{t1, . . . , t8}, {t12, . . . , t78}, {r12, . . . , r78}, {r123, . . . , r678} transitively, we may

take as R1 one of t1, t12, r12, r123. In virtue of (13), the roots R2, R8, and R9

are not orthogonal to R1 and the remaining six roots are. The total of possible

combination is 4×63P9 ' 3.4×1016 way. The computational complexity becomes
63P9

120P10
'

1

49040
times.

Remark 3. Since the order of Weyl group W (E8) is equal to 214 ·35 ·52 ·7

and since the isotropy of U (cf. (16)) in W (E8) is isomorphic to Z2
3, we observe

that there are at least
|W (E8)|

|S8| × |Z2
3|

= 2160 number of S8-orbits of P8 (cf. [5]) .

This actually coincides with the total number of LC8 just as we have obtained in

Lemma 3. As a consequence, we find that for any 8LC set A, AutW (E8)(A)∩S8 =

{1}, where AutW (E8)(A) = {w ∈ W (E8)|wA = A}.



A Relation between the Weyl Group W (E8) and Eight-line Arrangements 415

Table 2. Some representatives of 2160 S8-orbits of LC8

n Representative An of S8-orbit Un An = w · Ai, (w ∈ W (E8))

1 {r123 ,r124, r356, r178,r157 ,r268 ,r258 ,r467, r237, r348} 1

2 {r12, r134, r567,r128 ,r125 ,r368, r358, r246,r237 ,r478} s37s27s237A1

3 {t12, r123,r134 ,r256 ,r178 ,r157, r248, r367,r358 ,r168} s78s68s48s12s248A141

4 {t12, r345,r167 ,r136 ,r138 ,r148, r237, r568,r125 ,r246} s45s67s35s78s58s28s14s148A901

5 {r123 ,r124 , t14,r256 ,r156 ,r157, r346, r467,r458 ,r168} s78τ28A6

6 {r123 ,r124 , t14,r256 ,r347 ,r158, r157, r468,r136 ,r345} s56s78s68s48s38s24s248A30

7 {r123 ,r124 , t14,r256 ,r347 ,r345, r167, r136,r468 ,r158} s56τ27A6

8 {r123 ,r124 , t35,r167 ,r348 ,r346, r158, r237,r457 ,r256} s67s78s58s48s12s13s38s25s14τ67A6

· · · · · · · · ·

30 {r12, r134,r567 ,r58, r368,r127 ,r126 , t16,r158 ,r34} s67s57s78s38s12s18s138A1

31 {r123 ,r14,r156 ,r57, r267,r23, r368, t68, r578, r148} s56s67s23s17s137A20

32 {r123 ,r14,r245 ,r56, r357,r356 ,r278 ,r134, t23,r78} s78s67τ27A35

33 {r123 ,r14, t15,r145 ,r146 ,r67,r256 ,r567 ,r38, r358} s78s58s23s367A22

34 {r123 ,r14, t15,r145 ,r146 ,r257 ,r256, r27,r38, r358} s78s68s58s47s247A1

· · · · · · · · ·

134 {r123 , t45,r46, r156,r157 ,r257 ,r258 ,r38, t12,r246} s78s68s45s58s23τ18A34

· · · · · · · · ·

141 {t12,r123 ,r34, r145,r267 ,r256 ,r178 ,r346, t16, r78} s78s58s45s12τ34A540

· · · · · · · · ·

540 {t12, r123, t45, r167,r146 ,r257 ,r247 ,r356, t26, t37} s67s45s68s46s34τ3A1

· · · · · · · · ·

901 {t1,r123 ,r456 ,r245, r247, r347,r268 ,r157 ,r148 ,r358} s56s47s38τ18A1981

· · · · · · · · ·

1321 {r12, t13,r34,r45 ,r56,r67, r78,r28, t1,r345} s67s46s34s12s25s13s125A134

· · · · · · · · ·

1981 {t1, t2, r234,r345 ,r356 ,r478 ,r467, r146, r137,r368} s78s67s57s48s37s24s13τ12A1

· · · · · · · · ·

2152 {t12, t13,r245 ,r46,r67, r146, t1, t3, r25,r78} s78τ47A644

2153 {t1, t2, t13,r456 ,r47, r78,r358, r13, t25,r46} s46s68s38s567A2116

2154 {t1, t23, t12, r345, r46,r67,r78, r138, t2,r45} s45s56s26s16s126A1801

2155 {t12,r345, r36,r34, r45, t57, t1, t7,r28, r258} s45s34s36s12s13τ1A983

2156 {t1, r123,r24, r45,r56, r67 , t17, t8, t38, r367} τ1A1723

2157 {t12, t3, t1, t34,r45, r246, r67,r26,r458 ,r58} s67s56s145A1783

2158 {t1, t23, r24,r256 ,r57,r56, t16, t3,r124 ,r78} s12τ1A1936

2159 {t1, t2, t13, r456,r47, r45,r56, t26, r13,r78} s56s46s57s35s23s14s124A1324

2160 {t12, t3, t1, r145,r46, r67,r78, r28, t13,r45} s34s12s13τ13A710
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Example 1. Let U1 be the S8-orbit of LC8 containing

(16) U = {r568, r268, r345, r167, r146, r378, r478, r123, r158, r257}

given in Remark 1. In this case, it is easy to see that

(17) R(U1) = (r123, r124, r356, r178, r157, r268, r258, r467, r237, r348)

and

(18) A1 = s0 · U

where s0 = s78s56s58s46s12s13s38s26s15. Let X0 be the matrix defined in (10) and

let N(X0) be its normal form, namely

(19) N(X0) =





1 0 0 1 1 1 1 1
0 1 0 1 a′1 a′2 a′3 a′4
0 0 1 1 b′1 b′2 b′3 b′4



 .

We put (a, b) = s0(a
′, b′). Then by direct computation, we find that

(20)

a =

(

28709

26389
,
304

275
,
646

385
,
27113

25982

)

,

b =

(

4313

2399
,
133

75
,
494

175
,
2109

1181

)

.

Let X1 be the normal form of 3×8 matrix corresponding to (a, b). Then it follows

from the definition that X1 is contained in f(A1).

Since we have shown in Lemma 3 that there are 2160 S8-orbits of LC8,

we denote by Un (n = 1, . . . , 2160) these S8-orbits. For each Un, we have defined

R(Un). We denote by An the 8LC set defined by the row vector R(Un). In spite

that R(Un) is not uniquely determined by Un, An is uniquely determined. (In

our computation, for the technical reason An is determined ahead. Then Un is

done. This is not essential.) We choose U1 so that U ∈ U1 (cf. Example 1).

To continue the computation, we choose and fix wn ∈ W (E8) (n =

2, . . . , 2160) satisfying

(21) wn · A1 = An.

Some of concrete forms of wn (n = 1, . . . , 2160) are given in the last column in

Table 2.
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Example 2. Note that the representative A1321 includes simple roots

(Dynkin diagram). Then the 8LC set (9) in Lemma 2 is contained in U1321. In

Table 2, we can see the relation between A1 and A1321 as follows:

A34 = s78s68s58s47s247A1

A134 = s78s68s45s58s23τ18A34(22)

A1321 = s67s46s34s12s25s13s125A134.

7. The main theorem. In this section, we will prove the injectivity

of the map f defined in Theorem 2. Let X be a matrix of the form (3) and let

(x, y) = (x1, x2, x3, x4, y1, y2, y3, y4) be the point of R
8 defined by X. Then C(X)

denotes the connected component of P8 containing (x, y). Clearly, C(N(X0)) =

CAE8 where X0 is defined by (10).

We choose 3× 8 matrices Xn (n = 1, . . . , 2160) satisfying f(An) = C(Xn)

in the following way. We take X1 as the one defined in Example 1 and also the

point (a, b) of R
8 in Example 1. On the other hand, we already chose wn in (21).

Then we put

(23) (a(1), b(1)) = (a, b), (a(n), b(n)) = wn · (a, b) (n = 2, . . . , 2160)

and let Xn be the matrix corresponding to (a(n), b(n)). Then it follows from the

definition of Xn and An that f(An) = C(Xn).

Before stating the next lemma, we recall the definition of the adjacent

relation among polygons (cf. [6], [7]). Let A(H) be an n-line arrangement, where

H = (l1, l2, . . . , ln). There are M =
n(n − 1)

2
+ 1 number of polygons in A(H).

We denote all of polygons by Σj (j = 1, 2, . . . ,M). If Σj is a p-gon, there are

p number of polygons Σj1 , . . . ,Σjp having common side with Σj. If Σjk
is an

Njk
-gon (k = 1, . . . , p), we put RΣj

= {Nj1 , . . . , Njp}. We may assume that

N1 ≤ N2 ≤ . . . ≤ Np. We call RΣj
the list of adjacent polygons for the p-gon Σj.

Definition 2. We denote the totality of the lists of adjacent polygons for

all polygons Σ1,Σ2, . . . ,ΣM in A(H) by R(A(H)) = {RΣ1 , RΣ2 , . . . , RΣM
} and

call R(A(H)) the adjacent relation among polygons in an n-line arrangement

A(H) which may be sorted in lexicographical order.

We return to our situation. Let An be the simple eight-line arrangement

defined by the system of eight lines corresponding to the matrix Xn of (23) in

the sense of Grünbaum [9] (n = 1, . . . , 2160).
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By using the symbolic computational system Mathematica, we show the

following lemma.

Lemma 4.

(24) S8 · C(Xn) 6= S8 · C(X1) (n = 2, . . . , 2160).

Ou t l i e o f p r o o f. It is sufficient to show that An 6= A1 (n ≥ 2).

Let R(An) (n = 1, . . . , 2160) be the adjacent relation among polygons in

An. In particular, we give R(A1). In this case, there are ten triangles, thirteen

squares and six pentagons in A1. Its adjacent relation among polygons is given

by

R(A1) = {{4, 4, 4}, {4, 4, 5}, {4, 4, 5}, {4, 4, 5}, {4, 4, 5},

{4, 4, 5}, {4, 5, 5}, {4, 5, 5}, {4, 5, 5}, {5, 5, 5},

{3, 3, 4, 5}, {3, 3, 4, 5}, {3, 3, 4, 5}, {3, 4, 4, 4},

{3, 4, 4, 5}, {3, 4, 4, 5}, {3, 4, 4, 5}, {3, 4, 4, 5}, {3, 4, 4, 5},(25)

{3, 4, 5, 5}, {3, 4, 5, 5}, {3, 4, 5, 5}, {3, 4, 5, 5},

{3, 3, 3, 4, 4}, {3, 3, 3, 4, 4}, {3, 3, 4, 4, 4},

{3, 3, 4, 4, 4}, {3, 3, 4, 4, 4}, {3, 3, 4, 4, 4}}.

By direct computation using Mathematica, we have determined all the

adjacent relation among polygons R(An). The totality of R(An) (n = 1, . . . , 2160)

is divided into 135 different families of the adjacent relations among polygons.

Our result is shown in Table 3. The first column R(A) in Table 3 stands for

classified number 1, . . . , 135 of R(An) (n = 1, . . . , 2160) and the second column

for numbers of (8,7,6,5,4,3-gon) in the arrangement with R(A). The third column

F stands for the number of arrangements within the family with R(A) and the

fourth column An with R(A) stands for such the F number of arrangements.

Looking at Table 3, we conclude that the family R(A) = 20 contains only

A1. This means that

R(An) 6= R(A1) (n = 2, . . . , 2160).

Then,

(26) An 6= A1 (n = 2, . . . , 2160).
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Table 3. The adjacent relation among polygons of An (n = 1, . . . , 2160)

R(A) 8,7,6,5,4,3-gon ∗F ∗∗
An with R(A) R(A) 8,7,6,5,4,3-gon ∗F ∗∗

An with R(A)

1 0,0,0,4,17,8 1 A26 69 14 A69,A126 , . . .

2 6 A29,A35, . . . 70 20 A180, A182, . . .

3 12 A208,A977 , . . . 71 22 A171, A172, . . .

4 24 A186,A410 , . . . 72 18 A165, A344, . . .

5 0,0,0,5,15,9 1 A2 73 20 A167, A173, . . .

6 6 A22,A947, . . . 74 9 A20,A133 , . . .

7 3 A140,A1144 ,A1527 75 15 A161, A328, . . .

8 3 A19,A937, A1091 76 20 A168, A367, . . .

9 10 A181,A339 , . . . 77 14 A453, A454, . . .

10 4 A24,A25, . . . 78 34 A153, A351, . . .

11 8 A111,A112 , . . . 79 46 A143, A146, . . .

12 4 A18,A55, . . . 80 46 A115, A120, . . .

13 12 A162,A163 , . . . 81 0,0,1,5,12,11 6 A14,A74, . . .

14 12 A28,A148, . . . 82 14 A471, A674, . . .

15 10 A104,A105 , . . . 83 10 A15,A926 , . . .

16 8 A54,A938, . . . 84 4 A11,A12, . . .

17 16 A32,A169, . . . 85 7 A9,A78, . . .

18 14 A482,A731 , . . . 86 12 A84,A85, . . .

19 0,0,0,6,13,10 3 A13,A928, A1040 87 14 A75,A88, . . .

20∗ 1 A1 88 13 A96,A243 , . . .

21 5 A16,A927, . . . 89 14 A79,A86, . . .

22 5 A10,A918, . . . 90 20 A118, A271, . . .

23 14 A130,A135 , . . . 91 0,0,1,6,10,12 4 A3,A5, . . .

24 2 A51,A52 92 9 A56,A59, . . .

25 7 A101,A931 , . . . 93 11 A64,A923 , . . .

26 14 A132,A295 , . . . 94 17 A66,A306 , . . .

27 16 A113,A119 , . . . 95 14 A95,A261 , . . .

28 12 A23,A98, . . . 96 3 A7,A991, A1005

29 12 A444,A456 , . . . 97 11 A57,A70, . . .

30 9 A102,A247 , . . . 98 9 A63,A67, . . .

31 14 A121,A251 , . . . 99 20 A82,A302 , . . .

32 11 A144,A398 , . . . 100 0,0,1,7,8,13 3 A43,A999 ,A1336

33 0,0,0,7,11,11 3 A4, A910, A998 101 5 A38,A41, . . .

34 5 A6, A909, . . . 102 9 A39,A48, . . .

35 7 A65,A922, . . . 103 13 A44,A230 , . . .

36 4 A908,A988 , . . . 104 6 A266, A267, . . .

37 1 A8 105 16 A262, A263, . . .

38 7 A62,A915, . . . 106 0,0,1,8,6,14 6 A225, A226, . . .

39 10 A17,A72, . . . 107 0,0,2,0,19,8 24 A517, A522, . . .

40 9 A58,A218, . . . 108 0,0,2,1,17,9 56 A214, A499, . . .

41 14 A268,A269 , . . . 109 24 A520, A521, . . .

42 26 A106,A142 , . . . 110 0,0,2,2,15,10 16 A487, A488, . . .

43 0,0,0,8,9,12 7 A40,A904, . . . 111 22 A189, A407, . . .

44 5 A45,A46, . . . 112 18 A412, A435, . . .

45 6 A50,A239, . . . 113 0,0,2,3,13,11 12 A441, A442, . . .

46 14 A90,A91, . . . 114 0,0,2,4,11,12 5 A700, A701, . . .

47 2 A555,A556 115 21 A100, A352, . . .

48 0,0,0,9,7,13 5 A227,A228 , . . . 116 16 A389, A390, . . .

49 0,0,1,2,18,8 20 A36,A156, . . . 117 19 A97,A99, . . .

50 26 A211,A478 , . . . 118 12 A395, A396, . . .

51 11 A427,A428 , . . . 119 29 A103, A354, . . .

52 56 A187,A194 , . . . 120 0,0,2,5,9,13 16 A312, A313, . . .

53 0,0,1,3,16,9 10 A30,A34, . . . 121 19 A61,A217 , . . .

54 10 A31,A124, . . . 122 13 A341, A558, . . .

55 16 A27,A174, . . . 123 0,0,2,6,7,14 5 A236, A237, . . .

56 14 A93,A151, . . . 124 7 A37,A902 , . . .

57 22 A131,A176 , . . . 125 0,0,2,7,5,15 6 A223, A224, . . .

58 38 A196,A197 , . . . 126 0,0,3,6,4,16 5 A544, A545, . . .

59 38 A188,A409 , . . . 127 0,1,0,1,19,8 96 A210, A215, . . .

60 6 A125,A959 , . . . 128 0,1,0,2,17,9 48 A190, A195, . . .

61 16 A33,A116, . . . 129 114 A185, A199, . . .

62 24 A206,A209 , . . . 130 0,1,0,3,15,10 24 A149, A160, . . .

63 18 A92,A157, . . . 131 0,1,0,5,11,12 18 A53,A134 , . . .

64 40 A155,A159 , . . . 132 22 A107, A128, . . .

65 40 A191,A192 , . . . 133 28 A94,A123 , . . .

66 30 A175,A184 , . . . 134 0,1,0,7,7,14 2 A987, A1001

67 0,0,1,4,14,10 7 A21,A108, . . . 135 1,0,0,0,20,8 62 A518, A519, . . . ,
68 7 A114,A279 , . . . A1321, . . . , A2160

∗The column F stands for the number of arrangements within the family with R(A).
∗∗The column An with R(A) stands for the members of arrangements with R(A) but elements

more than the third are omitted.
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Hence we conclude that S8 · C(Xn) 6= S8 · C(X1) and the lemma follows. �

We are in a position to prove the main theorem.

Theorem 3. The map f of LC8 to W (E8) · CAE8 is injective.

P r o o f. Let Ã, Ã′ be extended 8LC sets and assume that f(Ã) = f(Ã′).

Then it suffices to show that Ã = Ã
′.

Since the action of W (E8) on LC8 is transitive, we may assume that A = U

without loss of generality, where U is the 8LC set introduced in Example 1.

First treat the case Ã
′ ∈ Un for some n (> 1). Then we find from Lemma

4 that f(Ã) 6= f(Ã′). This contradicts the assumption.

Next treat the case Ã
′ ∈ U1, namely there is w ∈ W (E8) such that

w ·U = A
′. Then by the assumption, f(Ũ) = f(Ã′) = w · f(Ũ). It suffices to show

that w = 1. To do so, we examine the relation between the eight lines and ten

triangles for the system of labelled eight lines (l01, l
0
2, . . . , l

0
8) corresponding to the

matrix N(X0). We find the following properties from Table 1:

(1) l08 is sides of five triangles l01l
0
5l

0
8, l02l

0
6l

0
8, l03l

0
7l

0
8, l04l

0
7l

0
8 and l05l

0
6l

0
8.

(2) l01, l05, l06, and l07 are sides of four triangles respectively.

(3) l02, l03, and l04 are sides of three triangles respectively.

(4) l01l
0
2l

0
3 is the unique triangle which has l01 and l02 as sides.

From these properties, we first observe that l08 plays a role different from the

remaining seven lines. Comparing (2) and the triangles containing lines l06 and

l07 of the five triangles in (1), we find that the roles of l06 and l07 are different from

the remaining lines. Then from the remaining two triangles l01l
0
5l

0
8 and l05l

0
6l

0
8 we

also find that the roles of l01 and l05 are different from the remaining lines. At this

moment, we remark that the roles of l01 and l02 are different from the others. From

the remark and the property (4), we find that the role of l03 is different from the

remaining lines. In this way, we conclude that eight lines play different roles each

other.

Now we put (x′, y′) = w · (a′, b′) where (a′, b′) is defined in Example 1

and let X ′ be the matrix of the normal form corresponding to (x′, y′). Then X ′

defines a system of labelled eight lines (l′1, l
′
2, . . . , l

′
8). From the assumption, (x′, y′)

is contained in f(Ũ). This implies that (l01, . . . , l
0
8) is continuously deformed to

(l′1, . . . , l
′
8) preserving the conditions I, II, III, IV. On the other hand, l ′1, . . . , l

′
8

have the same properties (1), (2), (3), (4). As a consequence, l08 becomes to l′8.
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Similarly l01, . . . , l
0
7 become to l′1, . . . , l

′
7, respectively. This implies that w = 1 and

w · Ã = Ũ. Therefore the injectivity of f is completely proved. �

Remark 4. As for the case Ã
′ ∈ U1 in the proof of Theorem 3, it

is possible to imply the conclusion by an alternative argument, which we now

explain.

For any A
′ = s · U, s ∈ S8, s 6= 1, it suffices to show that f(Ã′) 6= f(Ũ).

To do so from Lemma 1, we compare the signs of Rijk (1 ≤ i < j < k ≤ 8)
of (a, b) by (20) and those of s · (a, b). By direct computation, we find that the
48-vector;

(27)

(Sign(R125(a, b)), Sign(R126(a, b)), . . . , Sign(R678(a, b)))

= (1, 1, 1, 1,−1,−1,−1,−1,−1,−1,−1,−1, 1, 1, 1,−1,−1,−1, 1, 1, 1, 1, 1,−1,

1,−1,−1, 1, 1,−1,−1,−1,−1,−1,−1, 1, 1,−1,−1,−1,−1, 1, 1, 1,−1, 1, 1,−1)

where Sign(n) gives −1, 0, 1 if n < 0, n = 0, n > 0, respectively. By direct

computation using Mathematica, we obtain that the 48-vector (27) is different

from others by s · (a, b), s ∈ S8, s 6= 1. Note here that there are 8! = 40320

number of permutations in S8. As a result, we find that f(Ã′) 6= f(Ã). This

contradict the assumption.

Conjecture 1. The map f of LC8 to P8 is bijective.

If this is true, any system of labelled eight lines is described in terms

of root system of type E8 and simple eight-line arrangements are completely

classified.

Finally observing the result of R(An) (n = 1, . . . , 2160) in the outline of

proof of Lemma 4, we summarize the following proposition.

Proposition 2. Eight-line arrangements obtained from systems of label-

led eight lines contained in f(LC8) are divided into 28 number of families by the

difference of the numbers of polygons and are divided into 135 number of families

by the difference of the adjacent relations among polygons (cf. Table 3).

Remark 5. This study started from Problem 2 in [4] (see also Problem

2 in [8] p. 372). Then, the system of labelled eight lines corresponding to the

matrix X1 by (20) has a remarkable property among all the labelled eight lines

from our point of view. We have obtained only two solutions to Problem 2 in [4].

The one solution is represented by the labelled eight lines corresponding to X1
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and the other is represented by X2.

(28) X2 =













1 0 0 1 1 1 1 1

0 1 0 1
4313

2399

133

75

494

175

2109

1181

0 0 1 1
54

989

3

20
−

117

70
−

33

698













.

The arrangement A2 of the system of labelled eight lines corresponding to X2

belongs to the member of R(A) = 5 in Table 3 and contains nine triangles, fifteen

squares, and five pentagons.

Remark 6. Looking at Table 3, there are 62 members of R(A) = 135.

In this case, there is one octagon. Especially, we observe that the arrangement

A1321 corresponding to Example 2 is contained in these members. Figure 3 is an

illustration of eight lines of this family.

l1

l5

l3

l4

l6

l8 l7

l2

Fig. 3. Eight lines of R(A) = 135
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