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Abstract. In a distributed server architecture an obvious question is
where to deploy the components. Host recommendation, which gives the
answer, faces problems such as server selection, host deployment and, in
case of multimedia servers, video replication. It is especially relevant for
the Adaptive Distributed Multimedia Server (ADMS) which is dynamically
able to add and remove its components to different nodes of the network.
The present survey paper introduces the different variants of host recom-
mendation and gives an overview of its possible mathematical approaches.
Emphasis is put on the facility location problem and the related approxi-
mation algorithms. Finally some algorithms selected for implementation are
presented.
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1. Introduction. Host recommendation is a usual task for efficient
operation of servers. It answers the question which node to select in a network
for hosting a server application or which host to select for a special purpose.
Such questions arise in different situations during the operation of a distributed
multimedia server: From which server node should a client request be served?
Where to put server components in the network? Where to store video instances?
It is hard to find the correct answers because of several reasons. First, the
operation of the server is influenced by several network and node parameters
which are not easy to measure or to calculate accurately. Most of our decisions
have effect on the future operation of the server but the real situation is not
known exactly in advance. The multimedia server is a quite complex system
and the problem model should also be capable to include features such as video
replacement or caching. It is unclear in many cases which solution is the best
for the host recommendation since the goodness of the system can be evaluated
according to several conflicting aspects such as costs, user satisfaction, network
load etc. Each video may be delivered with different parameters (resolution,
frame rate, audio quality etc.) and it is not enough to select the locations of the
hosts, but the video variation also have to be determined. The time-complexity
of the algorithm is critical since the distributed video server may extend to large
areas through the Internet and the number of the clients may be huge. In many
cases, the algorithm should process large problems within strict time constraints.

This problem is especially relevant for the Adaptive Distributed Multime-
dia Server (ADMS) developed by the Klagenfurt University. ADMS is dynami-
cally able to load and remove its components to different nodes of the network
and this novel adaptive architecture enables migrating and replicating the server
components in the network. Appropriate host recommendation algorithm with
short running time is relevant for the distributed server to adapt quickly to
the changing network parameters and client demands. We were motivated to
deal with the host recommendation in order to improve the performance of the
ADMS. Beside the dynamic placement of the server nodes, we studied other
problems related to the host recommendation that are relevant for operating any
distributed multimedia.

The present paper gives a survey on the algorithms related to the host
recommendation. First, we give a brief overview of the ADMS server. Then
we introduce the host recommendation problem in our focus and its variants
including server selection, host deployment and video replication. Then we
continue our paper by presenting the possible mathematical approaches. First
of all, we discuss the facility location problem, its different variants and solution
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methods. Then some further mathematical problems are introduced as well that
can be connected with host recommendation such as the network flow and the
knapsack problem. At last, we give a brief summary of the host recommendation
algorithms that we applied.

2. Host recommendation problem.

The Adaptive Distributed Multimedia Server (ADMS). The mo-
dular structure of the ADMS [1] makes it possible to automate offensive adapta-
tion strategies [2]. The ADMS has four components: the Data Distributor (DD)
distributes the videos, received from a Production Client, onto Data Managers
(DM, also called as storage nodes) which store stripe units of the videos. Data
Managers storing the stripe units of the same video form a Data Manager group
and they are located practically on the same subnet. The Data Collector (DC,
also called as proxies or streamer nodes) collects these units, assembles them and
streams the requested video to a Retrieval Client. Finally the ADMS Controller
(AC) organizes how the server works where the host recommendation runs as well.
The nodes that are able to host server components are called as harbours. The
server is able to set up new components or remove old ones and also to migrate
and replicate videos between DM groups according to the dynamically changing
client requests, QoS parameters of the network, and loads of the nodes. To achieve
this, the ADMS relies on an appropriate middleware called Vagabond2 [1].

Variants of the problem. The host recommendation is needed in
different situations such as server selection, host deployment and video repli-
cation.

• Server selection: It assigns server node(s) to the client to serve its request.
One client request may be processed at the same time or more. The problem
is online in the sense that we do not know the whole series of requests in
advance but only the next one.

• Host deployment: It determines nodes in the network where to place indi-
vidual server components.

• Video replication: It selects storage nodes where the video instances should
be placed. The origin of the video instance is also relevant. Usually, it
generates huge network load.
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We distinguish two main variations of the host recommendation problem:
Light and Heavy Weight Recommendation. In case of Light Weight Recommen-
dation (LWR), the task is to find optimal places for data collectors or simply to
select one. This kind of recommendation has to be executed immediately after
a client request has arrived. The aim of the Heavy Weight Recommendation
(HWR) is to place optimally the instances of a video on the DM groups in the
system. It is called heavy weight, because large amount of data is transmitted
over the network and it is much more time consuming task than replicating or
migrating data collectors. In this case the running time of the recommendation
algorithm is much less critical. We can distinguish further subcases within these
two main categories. Table 1 summarises them. The static version of LWR is
relevant for servers where the location of data collectors is fixed. This is the usual
case at multimedia servers. The dynamic case refers to the ADMS, where data
collectors can be replicated. We speak about Upload when a client loads a new
video into the system. HWR Replication refers to the case when the video is
replicated to new storage nodes because the popularity of the video increases.

Type
Client

requests
Frequency
of calling

Time
constraints

Replication Selection

LWR
static

Current Continuous Strict —
DC, DM group,
video variation

LWR
dynamic

Current Continuous Strict DC
DC, DM group,
video variation

HWR
Upload

Predicted Occasional Moderate Video (DMs)
DD, DM group,
video variation

HWR
Replication

Predicted Periodical Loose Video (DMs)
DM group,
video variation

Table 1. The main aspects of the host recommendations depending on the time value.

2.3. The optimisation problem. Host recommendation deals with
selecting special nodes in the network for a specified purpose. This problem
occurs in several different situations during the operation of the server: host
recommendation can be used for finding optimal location for the server compo-
nents in the network or for selecting already occupied host nodes for a given
purpose, for example to serve a client request or to store a video.

Unfortunately, the real problem is extremely complicated. For a detailed
list of the input parameters see [5]. The parameters may vary depending on the
type of the host recommendation problem (LWR or HWR). We mention some of
them in order to demonstrate the complexity of the problem:
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Figure 1. The goal is to find optimal location for multimedia proxies and data
managers in a network [4]

• Terminal capability of each client.

• Current or possible locations of the server nodes.

• Locations of the existing or expected possible client requests.

• QoS parameters between the network nodes.

• Possible variations of the videos.

• Resource needs of variations.

• Profits from serving variations.

• Costs of the server nodes.

• Free local resources.

• etc.

The output of the model depends on the type of host recommendation. In case
of LWR, the output should tell:

• for each client request, the streamer node serving it.

• for each client request, the storage nodes serving it.
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• for each client request, which variation of the video to stream to the client

In case of HWR, it is not enough to determine the storage nodes where to put
the video instance. The origin of the video instance is also needed for replicating
or migrating the video instance.

The recommendation is done based on several contradictory optimisation
criteria whose harmonisation is not a trivial task:

• Maximising the total value of the servable clients.

• Minimising the number of storage nodes.

• Maximising the quality of service between the clients and storage nodes.

• Maximising the quality of delivered video variations.

• Minimising the network load arising from replicating videos.

Multimedia services typically need huge resources. We always have to check
whether the available network and the local resources are enough for streaming.

The distributed video server may cover large areas on the Internet and
stream data can be delivered to large number of clients. The running time of
the host recommendation algorithm becomes crucial for LWR in case of ADMS
since the delivery of the data-streams can start only after the placement of the
Data Collector nodes. In this case, the time-consuming algorithms aiming at the
solution with exact optimum are not applicable.

3. Related Optimisation Problems.

3.1. Facility Location Problem (FLP).
3.1.1. Overview. Suppose that fire stations are planed to place in a city.

The city has a number of sites, which can be used for fire stations. The cost
of placing and maintaining them is known at each site. The question is where
the fire stations should be located in order to minimise the total establishing
and maintaining cost and the average time to get to the potential sites of fire in
the city. The facility location problem is looking for answer to such questions.
This problem is well known in the operation research for decades. This problem
is well known in the operation research for decades. Some early works in this
topic include [6]–[8]. The facility location problem has many different application
areas such as placement of warehouses, telecommunication network design or
configuration of distributed servers. To find detailed survey of the problem, see
[9]–[10].



Algorithmic Background of the Host Recommendation. . . 371

The facility location problem belongs to the optimisation problems. We
shall focus on the uncapacitated facility location problem (UFLP), the best-
studied variant of the problem. Let us consider its specification.

The input of the problem instance consists of the elements as follows:

• The set of facility candidates (F ).

• The set of demand (or client) points (D).

• The fixed cost at each facility candidate i (fi).

• The transportation cost from the facility candidate i to the demand point
j (cij).

A feasible solution contains a set of facilities selected from the candidates and an
assignment of each demand point to one selected facility. The objective of the
optimisation is to minimise the total cost that can be calculated as the sum of the
fixed costs of the selected facility candidates plus the sum of the transportation
costs to each demand point from the facility to which it is assigned.

We remark that the facility location problem has many variants. We give
a list presenting some different categories of the problem.

• Deterministic vs. stochastic. If some parameters are given by probability
distribution, the problem is stochastic, otherwise deterministic.

• Discrete vs. continuos, according to the type of the set of the facility
candidates and the demand points.

• Static vs. dynamic. The problem instance is changing in time in the
dynamic case.

• Capacitated vs. uncapacitated. In the capacitated case there is an upper
bound on the number of demand points that can be assigned to a facility.

• Multi-capacitated case. It is an extension of the capacitated case when the
different types of the facilities have different capacities.

• Multilevel vs. one level. In case of the multilevel facility location problem,
the facilities form a hierarchy of k level. In this case the demands are
satisfied through the sequence of k different facilities, each of which belongs
to different level. This model is useful, for example, when central depots
are opened beside warehouses.
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• Metric case. It is an important special case when the transportation costs
are induced by a metric. In this case the costs are nonnegative and satisfy
the triangle inequality. Since the demand between two demand points is
not defined, the triangle inequality contains the sum of three edges instead
of two.

• Splittable vs. unsplittable demands. In assigning the demand of customers
to facilities, there are two natural variations to consider: the demand of
a costumer must be met by a single store (unsplittable demands), and
the demand of a customer may be divided across any number of facilities
(splittable demands). These variants are distinguished only in the capaci-
tated version, because in the uncapacitated variant each demand is satisfied
always by the closest facility.

• Fault tolerant version In this case, each demand point has to be connected
to a given number of facilities. This variation ensures that if a facility
breaks down than its clients still can be served with low cost by the other
facilities assigned to the client.

• Multicriteria FLP Several objectives may exist for evaluation of different
facilities. For a multicriteria optimization problem, usually there are no
“optimal” solutions as in the case of single criteria problems, but only
preferred solutions are available. The preferred solution must be Pareto
optimal (also non-dominated solution, that is, improving any of the objec-
tives is possible only with degrading others).

The present paper focuses on the simplest variation of the problem. How-
ever, the above variations may be relevant when we apply the facility location
problem to the host recommendation.

We still have to mention here the k-median problem as well. This problem
differs from the facility location problem that there are no costs for opening
facilities, instead a number k is specified, which is an upper bound on the number
of facilities that can be opened. Many cases, similar methods can be applied to
it as to the FLP.

3.1.2. Complexity results. Unfortunately, this problem is NP-complete,
as it is proven by Cornuejols et al. [11]. It means that there is no hope to find
an algorithm, which finds the exact optimal solution within acceptable time for
large problem instances.

However, some special cases are solvable in polynomial time. Kolen [12]
proved that the problem is solvable on trees in polynomial time. The facility
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location problem is defined on tree if the facility candidates and demand points
are located in the nodes of a tree. Nonnegative weights are assigned to the edges
of the tree as lengths and the transportation cost between a facility candidate
and demand point is the length of the path between the corresponding nodes.
Bárány el al. [13] improved the running time of the UFLP algorithm on trees.

3.1.3. Approximation results. Since there is no hope to find the exact
solution in polynomial time, the significance of the approximation algorithms
has increased. Many constant approximation algorithms have been published
for the problem that runs in polynomial time. Unfortunately, there are negative
results on the approximation algorithms for the FLP as well. Guha and Khuller
[14] proved that it is unlikely to find polynomial time approximation scheme for
the FLP, that is, a polynomial time algorithm that finds a solution with cost
at most 1 + ε times the optimum for any given ε. Sviridenko [15] proved that
the guaranteed approximation ratio cannot be less than 1.467 unless P = NP.
However, better result can be achieved in special cases. Arora et al. [16] found
randomised polynomial approximation scheme if the FLP is defined in the plane.
Kolliopoulos and Rao [17] proved the same result to Euclidean spaces of constant
dimension.

Hochbaum [18], Lin and Vitter [19] gave algorithms with O(log n) approxi-
mation ratio for the uncapacitated facility location problem in general case. They
proposed a greedy algorithm and a new technique called the filtering technique,
respectively. Many constant factor approximation algorithms were found in
the special case when the transportation costs are induced by a metric. The
table from Bumb’s PhD thesis [10] gives a quick overview of the approximation
algorithms on metric UFLP (Table 2). n shows the number of facility candidates
and demand nodes. At the next section, we introduce the techniques in Table 2.

3.2. Applied methods.

3.2.1. Linear Programming. To derive an integer programming formu-
lation of the facility location problem, two variables have to be introduced as
follows:

Xi,j: (0, 1) variable to indicate whether client i is served by facility j.

Yj: (0, 1) variable to indicate whether facility j is selected.

The other parameters come from the input of the problem, see the Over-
view of the FLP.

The Facility Location Problem can be now formulated in the form as
follows:
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Year
Perfor-
mance
guarantee

Reference Technique Running time

1997 3.16
Shmoys, Tardos

and Aardal

Filtering+LP

rounding

1999 2.408 Guha and Khuller
LP rounding+greedy

augmentation

1998 1.736 Chudak LP rounding

1998 5 + ε Korupolu et al. Local search O(n6 log(n/ε))

2001 3 Jain and Vazirani Primal-dual method O(n2 log n)

2001 3 Arya et al. Local search

2000 3 Mettu and Plaxton Combinatorial O(n2)

1999 1.853 Charikar and Guha

Primal-dual

method+greedy

augmentation

O(n3)

1999 1.728 Charikar and Guha

LP rounding

+ primal-dual method

+ cost scaling

+ greedy augmentation

2001 1.86 Mahdian et al dual fitting O(n2 log n)

2001 1.61
Jain, Mahdian

and Saberi
dual fitting O(n3)

2002 1.582 Sviridenko LP rounding

2002 1.52
Mahdian, Ye

and Zhang

dual fitting+greedy

augmentation
O(n3)

Table 2 Approximation results for the uncapacitated facility location problem [10]

minimize

(1)
∑

i∈D,j∈F

ci,j ·Xi,j +
∑

j∈F

fj · Yj

subject to

(2)
∑

j∈F

Xi,j ≥ 1, ∀i ∈ D

(3) Xi,j ≤ Yj, ∀i ∈ D,∀j ∈ F



Algorithmic Background of the Host Recommendation. . . 375

(4) Xi,j ∈ {0, 1}, ∀i ∈ D,∀j ∈ F

(5) Yj ∈ {0, 1}, ∀j ∈ F

Part (1) is the cost function. Constraint (2) ensures that each client is
assigned to a facility. Constraint (3) describes that a facility is selected if there
is at least one client assigned to it.

However, the integer program is usually hard to solve. For this reason,
the LP-relaxation of the problem is solved. In this case, the (0,1) constraints
have to omitted:

(4′) Xi,j ≥ 0, ∀i ∈ D,∀j ∈ F

(5′) Yj ≥ 0, ∀j ∈ F

3.2.1.1. Linear Programming Rounding. The linear programming relaxation
can be solved using efficient algorithms. If each variable is integer then we found
the optimum solution for the integer program. However, this is usually not the
case. Different rounding techniques can be applied to get integer solution from
the fractional one. Shmoys Tardos and Aardal [20] gave the first constant factor
approximation algorithm. They achieved their result applying the LP rounding
technique and the filtering technique.

3.2.1.2. Filtering technique. This method consists in constructing a “fil-
tered problem” by setting some variables to zero in the integer programming
formulation. Then the feasible integer solution to the filtered program can be
found either by LP rounding technique or by using some combinatorial algorithm
[19].

3.2.1.3. Primal-dual method, Dual fitting. Jain and Vazarini [21] applied
this method first to the facility location problem. Its running time is quite low
O(m log m), where m is the number of edges. This method is also based on the
linear programming. But it uses the dual pair of the primal linear program as
well presented above. The dual pair of the above linear program is as follows:

maximise

(6)
∑

i∈D

vi
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subject to

(7)
∑

i∈D

ti,j ≤ fj, ∀j ∈ F

(8) vi − ti,j ≤ ci,j, ∀i ∈ D,∀j ∈ F

(9) ti,j ≥ 0, ∀i ∈ D,∀j ∈ F

(10) vi ≥ 0, ∀i ∈ D

In case of dual program, we introduce new variables, ti,j and vi and we
have to maximise the profit function. The special feature of the dual program
that for any feasible solution the profit in the dual program is always smaller
or equal than the cost in the primal program. Primal-dual methods can achieve
good approximation by considering both the primal and the dual problems at the
same time. Dual fitting methods also use the primal-dual technique. Mahdian et
al. [22] achieved the best approximation ratio (1.52) so far for FLP using dual
fitting.

Combinatorial algorithms.
3.2.2.1. Local search or greedy. The local search heuristic for facility

location problems is extremely straightforward. The idea is to start with any
feasible solution and then to iteratively improve the solution by repeatedly moving
to the best “neighbouring” feasible solution, where one solution is a neighbour
of another if it can be obtained by either adding a facility, deleting a facility, or
changing the location of a facility. This heuristic was proposed by Kuehn and
Hamburger [7] and was subsequently shown to exhibit good practical performance
in empirical studies (see e.g., [23]).

3.2.2.2. Greedy strategies. This kind of methods has many variants and it
is usually combined with other methods. Mettu and Plaxton [24] developed the
first linear time algorithm. The construction applied in the algorithm is similar
to the one in the primal-dual method used by Jain and Vazirani [21]. They use
a “hierarchically greedy” approach whose basic idea is as follows: Rather than
selecting a point based on a single greedy criterion, a region is chosen greedily
and then a point is selected recursively within that region. Thus, the choice of
point is influenced by a sequence of greedy criteria addressing successively finer
levels of granularity.
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3.2.2.3. Greedy Augmentation (greedy improvement). If either the service
cost or the facility cost is very high, greedy local improvement decreases the total
cost by balancing the two. It always selects the facility in each step where the
ratio of the decrease in the total cost and the facility cost is the highest. The
greedy local improvement by itself yields a very good approximation for facility
location in O(n2) time. This method is applied in many algorithms: [22], [25]–
[26].

3.2.2.4. Cost scaling. Charikar and Guha [26] applied this method combi-
ned with greedy local improvement and the primal dual method. The idea is to
apply the algorithm to the scaled instance and than scale back to get a solution
for the original instance. On several occasions, this technique alone improves the
approximation ratios significantly.

3.2.2.5. Simulated annealing. Simulated annealing is a generic global opti-
mization method. Its name comes from metallurgy. In that case, the hot material
is slowly cooled in order to improve a better quality.

In case of global optimisation, the algorithm proceeds in the search space.
The subsequent points are not always better in each step: the algorithm may
select with nonzero probability even worse solutions. This probability decreases
monotonically while the algorithm is running. The initially high probability
ensures that high areas are discovered. Later the small probability ensures that
the solution remains near to the optimum.

3.3. Network flow. Let us imagine a water plumbing where the indi-
vidual pipes may have different widths and so different maximum flow per unit
time. There is an inlet and an outlet as well and the question is how much is the
maximum rate at which water can flow from the inlet to the outlet.

This is a network flow problem which can be specified more formally:
Given a graph G(V,E) with nodes V and edges E. c(e) ≥ 0 denotes the capacity
(maximum flow possible) of edge e ∈ E. Source s ∈ V and sink t ∈ V denotes
special nodes of the graph G. G, s, t and c() specifies a network. Furthermore,
there can be specified a flow f(e) on the edges of the network which is at most
the capacity of the edge c(e) ≥ f(e) for each e ∈ E and the total the inflow to
a node is equal to the total outflow from the node except the two special nodes.
The value of the flow is the outflow from the source or the inflow to the sink
which is the same.

The network flow problem can be applied even to find the computer
networks where the capacities are the available bandwidths in the network, the
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sink is the client and the source is data supplier node and more than one path
may be used to transmit the data to the client at the same time.

This problem can be solved efficiently in polynomial time. It remains
polynomial if a cost is assigned to each edge and we are looking for a solution with
maximal flow and minimal cost. However, the multi-commodity flow problem is
already NP-complete, where multiple source and sink pairs are given, and various
“commodities” can flow from a given source to a given sink.

3.4. Knapsack Problem. We found the knapsack problem useful to
handle with the local resource capacities. The original knapsack problem is
as follows: Given a knapsack with maximum volume and several items with
different volumes. The optimisation goal is to put as many items as possible
into the knapsack. This problem seems to be simple but it is NP-hard, that is,
computationally difficult.

Khan [27] applied its variant, namely the multiple-choice multi-dimension
knapsack problem (MMKP) for adaptive multimedia problem. The problem can
be described as follows. In this case there are some groups with different numbers
of items. Each item has a value and resource need. The resource need can be
described as a vector because an item need several resources. Furthermore, we
know the amounts of available resources. The multi-dimension knapsack problem
is to pick exactly one item from each group while maximising the total value of
the selected items, subject to the resource constraints.

This model is useful when the overall quality of the delivered multimedia
has to be maximised. In this case, the acceptable variations of the requested video
can be viewed as a group of items for each client. Each item can be characterised
by the resource needs for delivery to the client and by their qualities.

4. Implementations. This section gives a brief overview of the al-
gorithms we selected for host recommendation. We mentioned that the host
recommendation has different variants and for example. The algorithms operate
on objects which hide the differences between the LWR and HWR in order to
avoid the duplication of the algorithms. Due to the underlying common model,
the algorithms are able to find solutions for each type of the host recommendation
problem but they are not equally appropriate for different cases. For example,
facilities are assigned to the client requests to serve the video streams; they are
the pairs of streamer and hosting nodes in case of LWR while the streamer node
can be neglected at HWR.
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4.1. Linear Programming Rounding. We chose an algorithm based
on linear programming rounding for the solution of the host recommendation
problem. Our linear program is much more complicated than in case of facility
location problem. To derive the integer programming formulation of the problem,
we had to introduce variables Xi,j,k,l to indicate whether the video variation l is
served to the client i by DM group k through DC j. Furthermore, Si indicates
whether any request of client i is served or not. Similarly to the facilities, Yj,k

indicates whether the connection between DM group k and DC j is used for the
service. Weights are assigned to the different optimization criteria. They express
their priorities. Each weight is higher than the maximum of the subsequent
optimization criteria. We ensure in this way that the subsequent criteria are
concerned only if the criteria with higher weights are equal. The exact LP
formulation can be found in technical report version of [28]. We had to add
constraints to express the network and node resource constraints.

The possible values of the variables are 0 and 1. Since the time complexity
to find the exact solution for an integer linear programming problem is large,
we consider the LP-relaxation of the problem, where the possible values of the
variables can be any positive real number. To solve the linear program, we applied
SOPLEX, an object oriented implementation of the simplex algorithm [29]. This
software is integrated into the host recommendation algorithm.

If Xi,j,k,l = 1 in the solution then let the video variation l of client i be
served by server k through proxy j. The possible fractional values of X-type
variables do not represent legal solutions. We round them in a greedy manner.
We take each Xvariables with fractional value one after the other and we try to
select the current client-DC-DM group route denoted by the variable. We have
to check the resource constraints. The route is selected for video delivery if and
only if these conditions are fulfilled after the selection of the route.

4.2. Incremental Algorithm. The incremental algorithm takes the
facilities one after the other and the facility is selected if it improves the solution.
It has been originally developed for LWR. However, some goals for HWR, such
as minimising the number of storage nodes can be easily incorporated. The
incremental algorithm is a very simple but efficient method. For large problem
inputs a time limit can be set to abort running the algorithm when the running
time would be too long, and then apply the current recommendation for configu-
ration (this is, why the algorithm is called incremental).

Some optimization criteria such the number of storage nodes can be easily
incorporated but in its original form, the incremental algorithm is unsuitable
to minimize the network load arising from migration/replication. This is the
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reason while we introduce its extension, namely Complex Incremental Algorithm,
which works on three levels: it tries to add facilities one after the other to the
recommendation on the highest level, it examines the possible video instances
on the current facility on the next level and at last it tries to assign the client
requests to the video instances. For more details see [30].

The scheme of the incremental algorithm:

for each facility do

Decide on selecting the current facility
if the facility is selected then

for each client connected to the current facility do

Decide on assigning the current client to the facility

4.3. Greedy. In this algorithm we start with an empty set of proxies. In
each turn that proxy is added that decreases the cost the most. When calculating
the cost, in each turn a new configuration has to be generated based on the
previous one and the recently extended proxy set. This configuration setup is
made by an inner greedy algorithm that for every client selects the best proxy
from the set, and tries to modify the index of the chosen demand by adding or
subtracting one. Each proxy contacts the server that gives the least cost [31].

4.4. Particle Swarm. The particle swarm algorithm is based on the
algorithm of Kennedy and Eberhardt [32]. Their original variant uses a set of
particles, which particles describe a concrete configuration each. The particles
are connected to each other thus forming a given topology.

The particles (i.e. the configurations they describe) are initialized with
random values. The particles remember their own best configuration (bp), and
they know which neighbour of theirs (including themselves) gives the least costy
configuration (bn). The problem solving is divided into rounds. In each round the
particles calculate their new configuration by combining bp and bn, during which
they utilize stochastic values also. The algorithm continues until some predefined
condition is reached.

The definition of the original combination looks thus:

{

~vi(t) = ~vi(t− 1) + ϕ1(~pi − ~xi(t− 1)) + ϕ2(~pg − ~xi(t− 1))
~xi(t) = ~xi(t− 1) + ~vi(t)

where ϕ1, ϕ2 are random numbers from interval [0, 1), ~vi(t) is the ‘velocity’
(amount of change) at time t, ~xi(t) the value of the vector at time t, ~pi the least
costy vector of particle i, ~pg is the vector of the actually least costy neighbour.
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When the algorithm reaches the predefined condition, it ends. The result is the
vector of the least costy particle.

In our current case (ADMS) the elements of vector ~x are the following:

~x =





~κ
~λ
~µ





~κ ∈ C,
~λ ∈ P,
~µ ∈ Qi,

client i connects to DC κi

DC i connects to DM λi

client i gets demand µi

The algorithm, in its original form cannot be applied to problems similar
to the one presented in this paper, when the elements of the representation get
their values from non-orderable sets, because in these cases the addition in the
above formula makes no sense. (E.g. two DCs can not be sensibly added.)

As a solution, we proposed and applied the following vector-modification:










































ml(t) =
h(~x(t− 1), ~p)

L
mg

ma(t) = (1− α)ma(t− 1) + α ·ml(t)

~xi(t) =











{

~pi if ϕ1 ≤ mc

~xi(t− 1) if ϕ1 > mc

}

if ϕ2 ≤ ma(t) (crossover)

e ∈ Si if ϕ2 > ma(t) (mutation)

Where p is the vector of the least costy neighbour, h(~a,~b) is the Hamming
distance of the two vectors, L is the length of the vectors, mg is the global muation
rate, ml is the local mutation rate, ma is the average mutation rate, α is a scaling
factor, mc is the crossover-rate, S is the possible value set of the given vector
element.

The meaning of the formula is that the bigger the difference between
the vector of a particle and that of its least costy neighbour, the bigger the
mutation probability of the vector elements (taking into account the history of the
probability). For each element, that did not mutate, a new probability is counted
for getting the respective value from the neighbour. The Hamming distance is
used because without that at the end of the calculation a fluctuation can be
observed, which prolongs the fulfilment of the stop condition.

The algorithm runs until the cost deviation of the particles is within a
given bound.

4.5. The simple algorithm. It assigns each current request one after
the other to the facility that can serve the best video instance to the client and
if there are more such facilities it selects streaming route with the best QoS
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parameters. This method is especially appropriate in LWR for deciding from
where to serve a client when the number of clients is small. It is not adequate to
handle the facility cost. For an example, see [3].

The scheme of the algorithm:

for each client do

best facility ← 0

for each facility do

if better facility for the client than the best facility then

best facility ← facility

Assign best facility to the client

4.6. Best gain per resource usage first. It is based on the multiple-
choice multi-dimension knapsack problem [27]. In each step, the algorithm always
selects the possible video instance with highest value per unit resource consump-
tion where the value of a video instance is the total value of the client requests
servable from it. This algorithm is developed for HWR. However, it can be
adapted to LWR as well.

The scheme of the algorithm:

best gain ← 1

while best gain > 0 do

for each v ∈possible video instances do

ffv ← max
j

(

needed resourcej (v)

free resourcej (v)

)

if ffv > 1 then gainv =
value(v)

ffv

else gainv ← 0

best gain ← max
v

(gainv)

if best gain > 0 then

Select v for usage as video instance

The video instances can be characterised by the variation of the video
and the storage node where it is located. ffi is called feasibility factor which is at
most 1 if there are enough resources. The value of an instance can be for example
the expected number of clients that can be served from this instance. The gain
is the ratio of the value and the feasibility factor. For an example, see [3].
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5. Conclusions. The area of optimisation algorithms is very rich in
different methods and it offers plenty of approaches to solve the host recom-
mendation problem. This problem is much more complex than the well-known
optimisation problems. For this reason, the known problems should be extended
and different approaches should be combined. In many cases, the running time
is more critical than the good approximation and fast heuristic methods have
great significance. In an earlier work [28], we conducted tests to compare four
different algorithms (greedy, particle swarm, linear programming rounding and
incremental algorithm). The particle swarm algorithm produced the best result
while the incremental algorithm found the solution in the shortest time.
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