
Serdica J. Computing 1 (2007), 337–364

ON PROACTIVE VERIFIABLE SECRET SHARING

SCHEMES*

Ventzislav Nikov, Svetla Nikova, Bart Preneel

Abstract. This paper investigates the security of Proactive Secret Sharing
Schemes. We first consider the approach of using commitment to 0 in the
renewal phase in order to refresh the player’s shares and we present two types
of attacks in the information theoretic case. Then we prove the conditions
for the security of such a proactive scheme. Proactivity can be added also
using re-sharing instead of commitment to 0. We investigate this alternative
approach too and describe two protocols. We also show that both techniques
are not secure against a mobile adversary.

To summarize we generalize the existing threshold protocols to protocols
for general access structure. Besides this, we propose attacks against the
existing proactive verifiable secret sharing schemes, and give modifications
of the schemes that resist these attacks.

ACM Computing Classification System (1998): D.4.6.
Key words: Secret Sharing Schemes, Proactive Security.

*The paper has been presented at the International Conference Pioneers of Bulgarian
Mathematics, Dedicated to Nikola Obreshkoff and Lubomir Tschakaloff, Sofia, July, 2006.

The material in this paper was presented in part at the 11th Workshop on Selected Areas in
Cryptography (SAC) 2004 [13].



338 Ventzislav Nikov, Svetla Nikova, Bart Preneel

1. Introduction. The concept of proactive security was introduced by
Ostrovsky and Yung in [14] and applied by Herzberg et al. in [9] to secret sharing
schemes. Proactive security refers to security and availability in the presence of
a so-called mobile adversary, i. e., an adversary who is allowed to potentially
move among players over time with the limitation that he can only control some
subset of players (in ∆A) at a given time unit. Herzberg et al. [9] have further
specialized this notion to robust secret sharing schemes and have given a detailed
efficient computationally secure proactive secret sharing scheme.

Consider the following problem: if the information stored by the players
in order to share a given secret stays the same for a long period of time (e. g., the
lifetime of the system), then an adversary may gradually break into a sufficient
number of players, learn and destroy the secret. A way to address this problem is
to divide the time into periods. At the beginning of each period the information
stored by the players in that period changes, while the shared secret stays the
same. The system is set up in such a way that the adversary does not have enough
time to break into a required set of players. Moreover, the information that the
adversary learns during a particular period is useless during latter periods. So,
he has to start a new attack from scratch during each time period.

The goal of this paper is to show specific weaknesses when a mobile
adversary is considered. The paper is organized as follows. In Section 2 we
first introduce some notations and verifiable secret sharing schemes. Then we
focus on the mobile adversary model. We first investigate the approach to renew
a player’s shares by sharing 0. Section 3 is devoted to computational secure
schemes. Section 4 deals with unconditionally secure schemes and the certain
kinds of attacks. A solution resisting known attacks is given in Section 5. The
second approach to renew a player’s shares, namely by re-sharing, is investigated
in Section 6. Two solutions are proposed and shown to be insecure. Conclusions
are presented in Section 7.

2. Preliminary.

2.1. Notations. Denote the participants of the scheme by Pi, 1 ≤ i ≤ n,
and the set of all players by P = {P1, . . . , Pn}. Denote the set of all subsets of
P (i. e. the power set of P) by P (P) and the dealer of the scheme by D. The
role of the dealer is to share a secret s to all participants in the scheme. The
set of qualified (to reconstruct the secret) groups is denoted by Γ and the set
of forbidden (to reconstruct the secret) groups by ∆. The set Γ is monotone
increasing since for each set A in Γ also each set containing A is in Γ. Similarly,
∆ is monotone decreasing, since for each set B in ∆ also each subset of B is in



On Proactive Verifiable Secret Sharing Schemes 339

∆. Hence a monotone increasing set Γ can be efficiently described by the set Γ−

consisting of the minimal elements (sets) in Γ, i. e., the elements in Γ for which no
proper subset is also in Γ. Similarly, the set ∆+ consists of the maximal elements
(sets) in ∆, i. e., the elements in ∆ for which no proper superset is also in ∆.
For any two monotone decreasing sets ∆1,∆2 operation element-wise union ] is
defined as follows: ∆1 ]∆2 = {A = A1 ∪A2;A1 ∈ ∆1, A2 ∈ ∆2}.

The simplest access structure Γ is called (k, n)-threshold if all subsets of
players P with at least k + 1 participants are qualified to reconstruct the secret
and any subset of up to k players are forbidden to do it. Accordingly we will call a
Secret Sharing Scheme (SSS) a (k, n)-threshold if the access structure Γ associated
with it is (k, n)-threshold. Now we give a formal definition of a Monotone Span
Program.

Definition 2.1 [1]. A Monotone Span Program (MSP)M is a quadruple
(F,M, ε, ψ), where F is a finite field, M is a matrix (with m rows and d ≤ m
columns) over F, ψ : {1, . . . ,m} → {1, . . . , n} is a surjective function and ε =
(1, 0, . . . , 0)T ∈ F d is called target vector.

As ψ labels each row with a number i from [1, . . . ,m] that corresponds
to player Pψ(i), we can think of each player as being the “owner” of one or more
rows. Let MA denote the restriction of M to the rows i with i ∈ A. An MSP
is said to compute the access structure Γ when ε ∈ im(M T

A ) if and only if A is
a member of Γ. We denote such an access structure by Γ(M). We say that A
is accepted by M if and only if A ∈ Γ, otherwise we say A is rejected by M. In
other words, the players in A can reconstruct the secret precisely if the rows they
own contain in their linear span the target vector of M, and otherwise they get
no information about the secret. Hence when a set A is accepted by M there
exists a so-called recombination vector (column) λ such that M T

Aλ = ε. Notice
that the vector ε /∈ im(MT

B ) if and only if there exists a vector k ∈ Fd such that
MBk = 0 and k1 = 1.

2.2. Verifiable Secret Sharing Schemes. Verifiable Secret Sharing
(VSS) schemes guarantee the robustness of the sharing and the detection of
corrupt players. Informally, there are n players, some of them may be corrupt
and deviate from the protocol. The dealer possesses a value s as a secret input. In
the first stage, the dealer commits to a unique value s̃ (no matter what corrupt
players may do); moreover, s̃ = s whenever the dealer is not corrupt. In the
second stage, the already committed value s̃ will be recovered by all good players
(no matter what the corrupt players may do).

It is common to model cheating by considering an adversary A who may
corrupt some of the players passively and some actively. Passive corruption means



340 Ventzislav Nikov, Svetla Nikova, Bart Preneel

that the adversary obtains the complete information held by the corrupt players,
but the players execute the protocol correctly. Active corruption means that
the adversary takes full control of the corrupt players. Both passive and active
adversaries may be static, meaning that the set of corrupt players is chosen once
and for all before the protocol starts, or adaptive meaning that the adversary can
at any time during the protocol choose to corrupt a new player based on all the
information he has at the time, as long as the total number of corrupt players is
restricted. The adversary is characterized by a particular subset ∆A of ∆, which
is itself monotone decreasing structure. The set ∆A is called adversary structure
while the set ∆ is called privacy structure. The players which belong to ∆ are
also called curious and the players which belong to ∆A are called corrupt. An
(∆,∆A)-adversary ((k, ka)-adversary in the threshold case) is an adversary who
can (adaptively) corrupt some players passively and some players actively, as long
as the set A of actively corrupt players and the set B of passively corrupt players
satisfy both A ∈ ∆A and (A ∪ B) ∈ ∆. The following result is classic for VSS
theory:

Theorem 2.2. A (k, n)-threshold VSS computationally secure against
(k, ka)-adversary exists if and only if k + ka < n. An (k, n)-threshold VSS
unconditional secure against (k, ka)-adversary exists if and only if 2k+ka < n. A
perfect VSS computationally secure against (∆,∆A)-adversary exists if and only
if P /∈ ∆A ]∆. A perfect VSS unconditional secure against (∆,∆A)-adversary
exists if and only if P /∈ ∆A ]∆A ]∆.

2.3. The Settings. Proactive security provides enhanced protection to
long-lived secrets against a mobile adversary. In fact, proactive security adds
protection by “time diffusion”. Namely, all shares are periodically refreshed.
This renders useless the knowledge obtained by the mobile adversary in the
past. Proactive systems also use robustness techniques to enhance availability
by tolerating (detecting and correcting) malicious players. Moreover, it also
allows recoveries of the previously corrupt players, by “removing” the adversary
influence and restoring their (correct) information. This gives the system a self-
healing nature. As a result, the system can tolerate a mobile adversary. We will
consider a mobile (∆,∆A)-adversary in the general case and (k, ka)-adversary in
the threshold case.

We assume that the adversary intruding player Pi is “removable”, through
a “reboot” procedure, when the adversary influence is detected. By “rebooting”
the player we mean that the adversary’s influence over this player is stopped and
all player’s information is erased. That is why after this procedure the correct
share should be recovered. It is important to note that in proactive protocols



On Proactive Verifiable Secret Sharing Schemes 341

some information (e. g., the check values, the old share, etc.) should be “erased”.
This operation, to be performed by honest players, is essential for the proactive
security. Not doing so would provide an adversary that attacks a player at a given
time period with information from a previous period that latter could enable the
adversary to break the system.

We will follow the settings as presented in [14, 9] and for the sake of
simplicity we will describe them only in the threshold case. The following two
new phases Recovery and Renewal can be distinguished [9] in a Proactive scheme,
compare to a VSS scheme. At the beginning and at the end of the life time of
the system we have Share-Detection respectively Reconstruction. In general the
settings coincide with those of the VSS except that we consider a more powerful
adversary – a mobile one.

Mobile Adversary Model. In situations when the secret value needs to
be maintained for a long period of time, in order to protect the secret against a
mobile adversary, the life time is divided into time periods which are determined
by the global clock. At the beginning of each time period the players engage in
an interactive update protocol (also called update phase). The update protocol
will not reveal the value of the secret. At the end of the update phase the players
hold new shares of the secret.

The adversary can corrupt at most k (out of n) players at any moment
during a time period (see Fig. 1A). But if a player is corrupted during an update
phase, he is considered corrupted during both (adjacent to that update phase)
periods (see Fig. 1B). Hence an extended time period begins and ends with update
phase, i. e. any update phase belongs to two extended time periods and in each
such time period the adversary can corrupt at most k players.

But actually there are more constrains on the time periods. Consider the
case when the adversary corrupts k players in an update phase (e. g. i+1). Then
the adversary can’t corrupt more players neither in the time period i + 1 not in
time period i. Moreover in the update phases i and i + 2 the adversary is also
restricted to corrupt any additional player. Hence in the worst case the adversary
can’t corrupt more than k players in both periods i and i+1 (see Fig. 1C). Thus
the strongest restriction to the adversary is that he can corrupt up to k players
in any two consecutive time periods.

In [13] we proposed a modification to the mobile adversary model from
[9], imposing less restriction to the adversary. Consider a model in which the
corrupted during an update phase players are considered corrupted only in one
of the adjacent periods. More specifically at the end of each time period we have
Detection followed by Recovery after that the next period begins with Renewal.



342 Ventzislav Nikov, Svetla Nikova, Bart Preneel

Together Detection, Recovery and Renewal form an update phase, but we do
not restrict additionally the adversary to corrupt players in this phase as in [9].
In fact the “rebooting” of the corrupt players finishes the current time frame
and new time period begins (see Fig. 1D). The problem with this model is that
in the renewal phase every player possesses both his old and new shares. This
information from corrupted players in time period i+1 combined with the shares
of other k corrupted players from time period i is enough to reconstruct the
secret.

Fig. 1. Mobile Adversary Model

Road Map. In this paper we propose several types of attack to information
theoretic case, call them second and third type of attacks. We point out that
a specific problem arises in the renewal phase, namely we need a distributed
commitment protocol in which the committer is committed to 0 and the players
are able to check that the commitment is indeed 0 without revealing their auxiliary



On Proactive Verifiable Secret Sharing Schemes 343

shares. In order for this protocol to be secure against a mobile adversary we need
to reduce the number of cheating players. The necessary and sufficient condition
for security are consequently given in Theorem 5.1 and Theorem 5.2.

Last we investigate another approach [5, 6] to make an SSS proactively
secure, namely using re-sharing instead of commitment to 0 protocol in order to
renew and re-randomize the player’s shares. We describe two protocols using this
approach and show that both are subject to similar of the second type attack. Our
goal is to show specific weaknesses when mobile adversary is considered. Note
that all unconditionally secure protocols we describe in this paper remain secure
if the adversary is not mobile. Our aim throughout the paper is to learn more
from the systems that fail in order to build systems that succeed.

The initialization (e. g. Share and Detection phases) and the Reconstruc-
tion phases are the same as in the VSSs described in the Appendix (see Figs
10, 11, 12,13). That is why further we will describe here only the Renewal and
Recovery phases.

3. Computational Secure Schemes. Most of the used computatio-
nally secure schemes are based on Feldman’s [4] or Pedersen’s [15] VSS. We chose
to consider only Feldman’s scheme since it is simpler.

3.1. The Protocol. Herzberg et al. [9] propose a proactive scheme using
Feldman and Pedersen VSS schemes (see Fig. 10). Let the shares computed in

period t for player Pu be denoted by using superscript (t), i. e. s
(t)
u , h

(t)
u (x) or

g
(t)
u (y), t = 0, 1, . . .. Let the dealer’s polynomials corresponding to these shares

be denoted by f (t)(x) and f (t)(x, y). Let us describe the Recovery and Renewal
protocols given in [9].

We first briefly describe the idea how the player’s shares are renewed at
period t = 1, 2, . . .. When the secret s is distributed as a value f (t−1)(0) = s of
a k degree polynomial f (t−1)(x), we can update this polynomial by adding it to
a k degree random polynomial δ(t−1)(x), where δ(t−1)(0) = 0, so that f (t)(0) =
f (t−1)(0) + δ(t−1)(0) = s. Thus we can renew the shares f (t)(αu) = f (t−1)(αu) +
δ(t−1)(αu) thanks to the linearity (see Fig. 2). Note that δ(t−1)(x) =

∑
u∈A δu(x)

and that C
(t)
j corresponds to the j-th coefficient in f (t)(x).

Now we describe the idea how the player’s shares are recovered at period
t = 1, 2, . . .. Let the players in a set B are detected as corrupt and thus their
shares should be recovered. Set A = P \ B to be the set of uncorrupt players.
In general an analogous way to that used for re-randomization in the renewal
phase is applied. First all corrupt players Pv ∈ B are “rebooted”. In order to



344 Ventzislav Nikov, Svetla Nikova, Bart Preneel

recover the share of player Pv ∈ B every player Pu ∈ A shares a random k-degree
polynomial δu(x) such that δu(αv) = 0. By adding δu(x) for u ∈ A to f (t)(x)
a new random polynomial δ(x) is obtained. Now the players Pu ∈ A send their
temporary shares δ(αu) to Pv, which allow him to recover the whole polynomial
δ(x) and to compute his share δ(αv).

Theorem 3.1 [9]. A computationally secure (k, n)-threshold proactive
VSS exists if and only if 2k < n.

Proactive VSS [9]

Renewal Phase:

1. Each player Pu plays the role of the dealer.

2. Pu runs the Share-Detection Phase of Feldman’s VSS with a random
polynomial δ

(t−1)
u (x) =

∑k
j=0 δu,jx

j subject to δ
(t−1)
u (0) = 0. The

following broadcast values are used Cu,j = g
δu,j .

3. As a result of this Share-Detection Phase every player Pv has a

temporary share δ
(t−1)
u (αv) if the player Pu is not blamed as a corrupt

dealer.

4. Let A be the set of uncorrupt players.

5. Each player Pv updates its own share by performing

s(t)v = s(t−1)
v +

∑

u∈A

δ(t−1)
u (αv).

6. The new verification values are set C
(t)
j = C

(t−1)
j

∏
u∈A Cu,j .

Fig. 2. Proactive VSS [9]

4. Unconditionally Secure Schemes. We will refer to the uncondi-
tiopnal secure sub-protocols described in the Detection phase also as “pair-wise”
checking, for obvious reasons. These protocols ensure the consistency of the
shares. We will refer to hv(0) and gv(0) as “true parts” of the shares since they
are used to reconstruct the secret.

4.1. The First Protocols. The first unconditionally secure proactive
VSS was proposed by Stinson and Wei [16]. Note that in [16, 2, 3] the authors
consider different model in which all subsets of players with at least k + 1



On Proactive Verifiable Secret Sharing Schemes 345

participants are qualified, but any subset of up to b (b < k) players is forbidden,
where the restriction is due to the fact that some information is broadcast. So,
we will consider (k, n) access structure where up to b (b < k) players are corrupt
and will denote it by (b, k, n). Again we will present only Recovery and Renewal
Phases. Each player Pi is associated publicly with a non-zero element αi ∈ F, so
|P| < |F|. Recall that as a result of the previous phases all players maintain a

set A of “good” (not corrupt) players and possess shares h
(t−1)
i (x). The shares

h
(t−1)
i (x) are derived from a symmetric of degree k polynomial f (t−1)(x, y) by

setting y = αi, (see Fig. 11 and Fig. 13). First we consider the threshold case
and then we will generalize this protocol to general access structures case (see
Fig. 3 and Fig. 4).

4.2. The Second Type of Attack. In Step 2 of the renewal phase
additional information is broadcasted, that we do not have in the standard share-
detection phase. This information allows the players to check that the value
committed by Pe in the Renewal phase is indeed 0. Which ensures that the
secret has not been changed. But it turns out that the broadcast information in
the renewal phase allows the attacker to break the system even when b < k. We
will demonstrate briefly the attack against the proactivity, proposed by D’Arco
and Stinson [2], which we call second type attack.

Note that h
(t−1)
e,i (0) = h

(t−1)
e,0 (αi) holds. D’arco and Stinson have proposed

an attack against the proactivity [2] in the following way. Suppose that the

attacker has corrupted player Pi in some time frame, i. e. he has share h
(t−1)
i (x).

Then Pi being detected as corrupt is “rebooted”. In the renewal phase his share
is updated by

h
(t)
i (x)←− h

(t−1)
i (x) +

∑

Pe∈A

h
(t−1)
e;i (x).

But since h
(t−1)
e;0 (x) is public information the attacker is able to compute

the “true part” of the Pi’s new share, namely

h
(t)
i (0)←− h

(t−1)
i (0) +

∑

Pe∈A

h
(t−1)
e;i (0) = h

(t−1)
i (0) +

∑

Pe∈A

h
(t−1)
e,0 (αi).

Recall that the knowledge of the “true part” of the share is enough for reconstruc-
ting the secret. Therefore, incrementally breaking different sets of players the
attacker is able to compute the secret.

4.3. Patching the Scheme—Asymmetric Case. D’Arco and Stinson
[2] proposed two variations of this scheme that both resist the attack described



346 Ventzislav Nikov, Svetla Nikova, Bart Preneel

Proactive VSS – Threshold Case [16]

Renewal Phase:
In this phase each player Pe plays the role of the dealer.

1. Each player Pe ∈ A selects a random symmetric polynomial δ
(t−1)
e (x, y)

of degree k, subject to δ
(t−1)
e (0, 0) = 0.

2. Player Pe sends h
(t−1)
e;i (x) = δ

(t)
e (x, αi) to Pi for 1 ≤ i ≤ n and broadcasts

h
(t)
e;0(x) = δ

(t−1)
e (x, 0).

Modified Detection:

1. Player Pi checks whether h
(t−1)
e;i (0) = h

(t−1)
e;0 (αi) and h

(t−1)
e;0 (0) = 0.

2. If these relations are satisfied, then Pi computes and sends to Pj the

usual check value h
(t−1)
e,i (αj). Otherwise Pi broadcasts an accusation

to Pe.

3. All players perform the pair-wise checking with accusations protocol.
At the end they update the set of good players A.

4. All players update their shares by putting

h
(t)
i (x)←− h

(t−1)
i (x) +

∑

Pe∈A

h
(t−1)
e;i (x).

Recovery Phase:

1. Every corrupt player Pj /∈ A is “rebooted”.

2. Every good player Pi ∈ A computes and sends to every corrupt player

Pj the check value h
(t−1)
i (αj).

3. Upon receiving the data, Pj computes h
(t−1)
j (x), such that h

(t−1)
j (αi) =

h
(t−1)
i (αj) holds for some subset of honest, qualified players Pi ∈ B,
B ⊆ A.

4. Player Pj sets h
(t−1)
j (x) as his share.

Fig. 3. Proactive VSS—Threshold Case [16]



On Proactive Verifiable Secret Sharing Schemes 347

Proactive VSS—General Case [11]

Renewal Phase:

In this phase each player Pe plays the role of the dealer.

1. Each player Pe ∈ A selects a random symmetric d × d matrix R(e),
subject to 0 in its upper left corner.

2. Player Pe sends U
(e)
i = MiR

(e) to Pi for 1 ≤ i ≤ n and broadcasts

U
(e)
0 = ε

TR(e).

Modified Detection:

1. Player Pi checks whether U
(e)
i ε = Mi(U

(e)
0 )T and < U

(e)
0 , εT >= 0.

2. If these relations are satisfied, then Pi computes and sends to Pj

the usual check matrix C
(e)
ij = U

(e)
i MT

j . Otherwise Pi broadcasts
an accusation to Pe.

3. All players perform the pair-wise checking with accusations protocol.
At the end they update the set of good players A.

4. All players update their shares by putting

Ui ←− Ui +
∑

Pe∈A

U
(e)
i .

Recovery Phase:
Recall that as a result of the previous phases all players maintain a set A of
“good” players and have shares Ui.

1. Every corrupt player Pj /∈ A is “rebooted”.

2. Every good player Pi ∈ A computes and sends to every corrupt player
Pj the check matrix Ci,j = UiM

T
j , i.e CA,j = UAM

T
j .

3. Upon receiving the data, Pj computes Uj , such that MiU
T
j = Cij holds

for some subset of honest, qualified players B of A, i. e. MBU
T
j = CB,j .

4. Player Pj sets Uj as his share.

Fig. 4. Proactive VSS—General Case [11]



348 Ventzislav Nikov, Svetla Nikova, Bart Preneel

in Section 4.2. Because of the observation that the symmetry of the polynomials
f (e)(x, y) can be used to break the scheme the authors proposed two asymmet-
ric solutions. Their first proposal is to use asymmetric polynomials instead of
symmetric. The second solution is to modify the symmetric polynomial scheme
by adding some “asymmetry”.

Recall that as a result of the previous phases all players maintain a set A of

“good” (not corrupt) players and have shares h
(t−1)
i (x) and g

(t−1)
i (y) polynomials

of degree k (see Fig. 12). Each player Pi is associated publicly with a non-zero
element αi ∈ F, so |P| < |F| (see Fig. 5).

4.4. The Second Type of Attack—the Asymmetric Case. But this
modification has a flaw. Let us consider the asymmetric protocol. We can apply

nearly the same attack as described in Section 4.3, but now applied to g
(t)
i (y)

instead of h
(t)
i (x). Assume that the attacker has corrupted player Pi in some time

frame, i. e. he has the shares h
(t−1)
i (x) and g

(t−1)
i (x). Then Pi being detected as

corrupt is “rebooted”. In the renewal phase his share is updated by h
(t)
i (x) ←−

h
(t−1)
i (x)+

∑
Pe∈A

h
(t−1)
e;i (x) and g

(t)
i (y)←− g

(t−1)
i (y)+

∑
Pe∈A

g
(t−1)
e;i (y). But since

h
(t−1)
e;0 (x) is public information the attacker is able to compute

∑
Pe∈A

g
(t−1)
e;i (0),

using g
(t−1)
e;i (0) = h

(t−1)
e;0 (αi). Hence the attacker has discovered the “true part” of

Pi’s new share, namely g
(t)
i (0) ←− g

(t−1)
i (0) +

∑
Pe∈A

h
(t−1)
e;0 (x). The knowledge

of the “true part” of the share g
(t)
i (y) is enough for reconstructing the secret

(see Remark 8.1). Therefore incrementally breaking different set of players the
attacker is able to compute the secret. Note that it does not matter whether

h
(t−1)
e;0 (x) = δ

(t−1)
e (x, 0) or g

(t−1)
e;0 (y) = δ

(t01)
e (0, y) is broadcast since the attack is

symmetric.

4.5. Patching the Scheme—Symmetric Case. Now we present the
proposition based on symmetric polynomials given in [2] (see Fig. 6).

4.6. The Third Type of Attack. The second modification of the
scheme from [2] has also a flaw. In [3] D’Arco and Stinson provided description
of our attack and our fix to their scheme (see also Sect. 5.1). Now we will
demonstrate our attack [12] that uses the weakness in the second proactive
protocol by D’Arco and Stinson. First, note that instead of a “verification vector”
vi ∈ Fn one can use a polynomial vi(x) of degree k, such that vi(αj) = vi

j. In

fact, we can change the last step of the renewal phase as follows: v
(t)
i (x) ←−

v
(t−1)
i (x)+

∑
Pe∈A

h
(t−1)
e;i (x). In this way the size of the verification share becomes



On Proactive Verifiable Secret Sharing Schemes 349

Proactive VSS—Threshold Asymmetric Case [2, 3]

Renewal Phase:
In this phase each player Pe plays the role of the dealer.

1. Each player Pe ∈ A selects a random polynomial δ
(t−1)
e (x, y) of degree

k, subject to δ
(t−1)
e (0, 0) = 0.

2. Player Pe sends h
(t−1)
e;i (x) = δ

(t−1)
e (x, αi) and g

(t−1)
e;i (y) = δ

(t−1)
e (αi, y)

to Pi for 1 ≤ i ≤ n and broadcasts h
(t−1)
e;0 (x) = δ

(t−1)
e (x, 0).

Modified Detection:

1. Player Pi checks whether g
(t−1)
e;i (0) = h

(t−1)
e;0 (αi) and h

(t−1)
e;0 (0) = 0.

2. If the conditions are satisfied, then Pi computes and sends to Pj the

check value g
(t−1)
e;i (αj). Otherwise Pi broadcasts an accusation to Pe.

3. All players perform the usual pair-wise checking with accusations
protocol and update the set of good players A.

4. All players update their shares by putting

h
(t)
i (x) ←− h

(t−1)
i (x) +

∑

Pe∈A

h
(t−1)
e;i (x)

g
(t)
i (y) ←− g

(t−1)
i (y) +

∑

Pe∈A

g
(t−1)
e;i (y).

Recovery Phase:

1. Every corrupt player Pj /∈ A is “rebooted”.

2. Every good player Pi ∈ A computes and sends to every corrupt player

Pj the values h
(t−1)
i (αj) and g

(t−1)
i (αj).

3. Upon receiving the data, Pj computes h
(t−1)
j (x) and g

(t−1)
j (y), such

that h
(t−1)
j (αi) = g

(t−1)
i (αj), g

(t−1)
j (αi) = h

(t−1)
i (αj) and h

(t−1)
j (αj) =

g
(t−1)
j (αj) hold for some subset of honest, qualified players Pi ∈ B and
B ⊆ A.

4. Player Pj takes h
(t−1)
j (x) and g

(t−1)
j (y) as his shares.

Fig. 5. Proactive VSS—Threshold Asymmetric Case [2, 3]



350 Ventzislav Nikov, Svetla Nikova, Bart Preneel

Proactive VSS—Threshold Symmetric Case [2]

Renewal Phase:

In this phase each player Pe plays the role of the dealer.

1. Each player Pe ∈ A selects a random symmetric polynomial δ
(t−1)
e (x, y)

(note) of degree k − 1.

2. Player Pe sends h
(t−1)
e;i (x) = δ

(t−1)
e (x, αi) to Pi for 1 ≤ i ≤ n.

Modified Detection:

1. Player Pi computes and sends to Pj the usual check value h
(t−1)
e;i (αj).

2. All players perform the usual pair-wise checking with accusation
protocol and update the set of good players A.

3. All players update their shares by putting

h
(t)
i (x)←− h

(t−1)
i (x) + αi

∑

Pe∈A

h
(t−1)
e;i (x).

Moreover, the players update a “verification vector” vi ∈ Fn by
computing for 1 ≤ j ≤ n

vi
j ←− vi

j +
∑

Pe∈A

h
(t−1)
e;i (αj).

Detection Phase:

1. Player Pi computes and sends to player Pj the check-values h
(t−1)
i (αj).

2. Each player Pj checks whether h
(t−1)
i (αj)−h

(t−1)
j (αi) = vj

i . (αj −αi).
If Pj finds that this is not true, then he broadcasts an accusation to Pi.

3. Each player Pi computes the set of good players.

Recovery Phase:

1. All corrupt players Pj /∈ A are “rebooted” and every good player Pi ∈ A

computes and sends to every corrupt Pj the check-values h
(t−1)
i (αj) and

vi
j .

2. Upon receiving the data, Pj computes h
(t−1)
j (x), such that for some

subset of honest, qualified players Pi ∈ B, B ⊆ A the equation

h
(t−1)
j (αi) = h

(t−1)
i (αj) + vi

j . (αi − αj) holds. He calculates vj by

setting vj
i = vi

j .

3. Player Pj sets as his shares h
(t−1)
j (x) and vj.

Fig. 6. Proactive VSS—Threshold Symmetric Case [2]



On Proactive Verifiable Secret Sharing Schemes 351

k. Denote the polynomial h
(t−1)
A;i (x) =

∑
Pe∈A

h
(t−1)
e;i (x). Note that the usual share

h
(t)
i (x) is “asymmetric”, whereas the “symmetry” is collected in the verification

share v
(t)
i (x). But the information from the share and the verification share of a

player Pi allows the attacker to calculate the initial share h0
i (x) of Pi, obtained

from the Dealer during the Distribution, i.e., in the Share phase. Indeed, after q
executions of the Renewal phase, player Pi possesses

h
(t=q)
i (x) = h

(t=0)
i (x) + αi

q∑

t=1

h
(t)
A;i(x) and v

(t=q)
i (x) =

q∑

t=1

h
(t)
A;i(x).

Assume that the attacker has corrupted Pi and has obtained v
(t=q)
i (x) and

h
(t=q)
i (x). Subtracting αiv

(t=q)
i (x) from h

(t=q)
i (x) the attacker obtains the initial

share h
(t=0)
i (x). As a consequence if the adversary breaks into k+1 players once,

even in different periods, he collects k+ 1 initial shares and hence he can recover
the secret.

5. The Modified Protocol.
5.1. The Threshold Case. In this section we will describe the modifi-

cations of the protocols [12] (also [3]) that resist the attacks presented in Section
4. Let us consider the symmetric polynomial protocol in the threshold case.
Basically, the problem in the procedure of D’Arco and Stinson [2] is due to the
“asymmetry” in the renewal polynomial. Indeed, we have

f (t)(x, y)←− f (t−1)(x, y) + y.δ(t−1)(x, y),

where δ(t−1)(x, y) =
∑

Pe∈A
δ
(t−1)
e (x, y). Note that f (t)(0, 0) is not changed, so

the secret stays the same. Also f (t)(0, y) is changed randomly so the adversary is
not able to calculate the new “true parts” of the player’s shares. But to be able
to perform a pair-wise check one needs a “symmetry”, that is why the players
keep two shares: the actual share and the verification share, which collects the
asymmetry of the protocol. We propose to keep the symmetry in the renewal
polynomial as follows:

f (t)(x, y)←− f (t−1)(x, y) + (x+ y).δ(t−1)(x, y).

Thus we need to modify only the last step in the Renewal phase of the Protocol
in Fig. 6. All players update their shares by

h
(t)
i (x)←− h

(t−1)
i (x) + (x+ αi)

∑

e∈A

h
(t−1)
e;i (x)



352 Ventzislav Nikov, Svetla Nikova, Bart Preneel

and we do not need a verification share anymore. Therefore the remaining phases
can be used from the Protocol in Fig. 3 instead of the Protocol in Fig. 6.

Now we are ready to refine the conditions for security of proactive VSS
(Theorem 3.1), based on the considered approach to renew player’s shares by
sharing 0 in the new adversary model.

Theorem 5.1. A (b, k, n) proactive VSS computationally secure against
a (k − 1, ka)-adversary exists if and only if n > k + ka and ka ≤ b. A (b, k, n)
proactive VSS unconditionally secure against a (k− 1, ka)-adversary exists if and
only if n > 2ka + k and ka ≤ b.

P r o o f. The proof is identical to the VSS security proof with the only
difference that the shares hi(x) and the polynomials f(x, y) are of degree k instead
of k− 1. Thus in order to correct up to ka errors (corrupt player’s shares) in the
Reconstruction and Recovery phase we need n > 2ka + k. �

5.2. The General Case. A similar to the previous section approach [12]
can be applied to the general access structure Protocol from Fig. 4, see Fig. 7.

Theorem 5.2. Let M = (F,M, ε, ψ) be an MSP and M be an m × d
matrix. Let ∆̃c = Γ(M) and let ∆̃ k ∆. Then the protocol described in Fig. 7 is
a perfect proactive VSS scheme secure against (∆,∆A)-adversary if the following
conditions are satisfied:

1. rank(MA) = d, for any group A ∈ Γ(M)−; (Recovery)

2. rank(MB) � d− 1, for any group B ∈ ∆+; (Renewal)

3. P /∈ ∆A ]∆A ] ∆̃. (VSS)

P r o o f. We rely again on the VSS security proof, so the third condition
implies that we have a VSS secure against an (∆̃,∆A)-adversary. Consider the
Recovery phase in Fig. 4. Since B ∈ Γ(M) we have that the “true part” of Pj ’s
share, namely Ujε, is uniquely determined by Ujε = CT

B,jλ, where MT
Bλ = ε. We

know from the pair-wise checking protocol that there exists a solution Uj such
that MBU

T
j = CTB,j holds, i. e., Uj is consistent with UB . But in order to provide

consistency of Pj’s new share Uj with the rest of the shares UC for C ∩ B = ∅,
we require Uj to be the unique solution of the system MBU

T
j = CTB,j . This

requirement implies the first condition in the theorem. Let us assume that there
exists a group B ∈ ∆+, such that rank(MB) = d− 1 holds. We know also that ε

is not in span(MB). Since the first row and column in R(e,2) are zero the players

in B could solve the system
(

ε
T

MB

)
R =

(
0

U
(e,2)
B

)
and the solution is R = R(e,2).



On Proactive Verifiable Secret Sharing Schemes 353

Therefore the players in B could calculate also the “true part” of the shares U
(e)
i

for all players, since U
(e)
i ε = U

(e,2)
i ε and U

(e,2)
i is already revealed. That is why

we require the second condition. �

Remark 5.3. In the threshold case in order to have a (b, k, n) proactive
VSS secure against (k− 1, ka)-adversary we need Γ̃ = Tk,n, ka ≤ b < k. The first
two conditions of Theorem 5.2 are fulfilled for the corresponding Vandermonde
matrix.

The (b, k, n) SSSs are also called ramp SSSs, and they correspond to
incomplete access structures. The same observation holds for general case where
(Γ(M),∆) form incomplete access structure too. Thus we need to transform an
complete (threshold or general) access structure to incomplete (ramp or general)
ones in order to provide security against the mobile adversary.

The first proactive protocols [9, 10] were applied to threshold access
structures in the cryptographic setting. Since it was quite easy in that case to add
the functionality of proactivity it was a common expectation that it would also be
easy to add this functionality to all existing distributed protocols like VSS. But
it turns out that a specific problem arises, namely in the renewal phase we need a
distributed commitment protocol in which the committer is committed to 0 and
the players are able to check that the commitment is indeed 0 without revealing
their auxiliary shares. As a result of this specific problem several attacks against
the Renewal phase that break the proactive security have been found. Thus the
approach to refresh the shares by sharing 0 as a secret in the renewal phase seems
to have a drawback, i. e., in order for the protocols to be secure against b cheating
players we need to use polynomials of degree k − 1 (instead of k) and hence we
impose the requirement b < k.

Remark 5.4. The Renewal phase protocol in which 0 is shared as a
secret is used as a stand alone sub-protocol in several other distributed protocols.
Note that the weaknesses we pointed out here to these protocols arise only when
mobile adversary is considered.

6. Another Approach to Add Proactivity. Another approach
to refresh (renew) the shares of the players is to re-share each share amongst
the participants and then to combine the auxiliary shares in a special way. This
approach was first applied to proactive SSS in [5, 6] divided there in two sub-
protocols called sum-to-poly and poly-to-sum. These two sub-protocols together
achieve the re-sharing goal. In general, every player first shares his own share
(re-sharing) and then computes his new share as a certain linear combination of



354 Ventzislav Nikov, Svetla Nikova, Bart Preneel

Proactive VSS—General Case [12]

Renewal Phase:

In this phase each player Pe plays the role of the dealer.

1. Each player Pe ∈ A selects a random symmetric (d−1)× (d−1) matrix
R(e) and uses it to construct two symmetric d×d matrices R(e,1), R(e,2).
The matrix R(e,1) is constructed by adding a zero column and a zero
row as last row and column, whereas the matrix R(e,2) is constructed by
adding a zero column and a zero row as first row and column.

2. Player Pe sends U
(e,1)
i = MiR

(e,1) and U
(e,2)
i = MiR

(e,2) to Pi for
1 ≤ i ≤ n, i 6= e.

Modified Detection:

1. Player Pi checks whether the last column of U
(e,1)
i and the first column

of U
(e,2)
i are zero-columns.

2. If these conditions are not satisfied, Pi will broadcast an accusation

to Pe. Otherwise Pi computes U
(e)
i as the sum of the right

shift of the columns of U
(e,1)
i and the left shift of the columns

of U
(e,2)
i , i. e., if we represent the matrices by columns as

follows U
(e,2)
i = [0, (U

(e,2)
i )(1), . . . , (U

(e,2)
i )(d−1)] and U

(e,1)
i =

[(U
(e,1)
i )(1), . . . , (U

(e,1)
i )(d−1),0] then U

(e)
i = [(U

(e,2)
i )(1), (U

(e,2)
i )(2) +

(U
(e,1)
i )(1), . . . , (U

(e,2)
i )(d−1) + (U

(e,1)
i )(d−2), (U

(e,1)
i )(d−1)].

3. Finally, Pi computes and sends to Pj the usual check matrices C
(e)
ij =

U
(e)
i MT

j , C
(e,1)
ij = U

(e,1)
i MT

j and C
(e,2)
ij = U

(e,2)
i MT

j .

4. All players perform the usual pair-wise checking with accusation
protocol and they update the set of good players A.

5. All players update their shares by putting

Ui ←− Ui +
∑

Pe∈A

U
(e)
i .

Fig. 7. Proactive VSS—General Case [12]



On Proactive Verifiable Secret Sharing Schemes 355

the auxiliary shares he receives from the other players, in such a way that at the
end the players have new shares for the same secret as required in the renewal
phase.

The approach of re-sharing the players shares is well known is SSS and
it could be applied to change dynamically the access structure associated with
the scheme. For example let f(x) be k-degree polynomial such that f(0) = s
and let every player Pu has a share su = f(αu). Then every player Pu chooses
an `-degree polynomial gu(x) such that gu(0) = su, i. e. he re-shares his share
sending auxiliary shares gu(αv) to player Pv. A set A of at least k+1 good players
is determined. For such a set A there exist constants rw (which depends only on
A, but not on player’s shares and form corresponding to A recombination vector)
such that

∑
w∈A rwsw = s. Now every player Pv combines the auxiliary shares

he received to compute his new share, i. e. s̃u =
∑

w∈A rwgw(αv). It is easy to
check that the new shares correspond to the same secret s and that the access
structure is changed from (k, n) to (`, n). Nearly the same protocol works in the
computational secure VSS setting, e. g. Feldman’s VSS.

On the other hand in the unconditionally secure VSS setting re-sharing
and especially changing the access structure is more subtle. For the sake of
simplicity we will present only the threshold protocols, the generalization to
general access structure is straightforward using MSPs. We will consider two
protocols, which do not allow changing the access structure, since it is out of
scope. Our goal is to show that the usual ways of doing re-sharing are not secure
against a mobile adversary. First we will describe the straightforward way to
re-share the shares. Then we will show that this protocol is not secure against a
mobile adversary. Second we will describe another (more complex) protocol and
will show that it is also not secure.

6.1. A Simple Re-Sharing Protocol. Every player Pu holds a share

h
(t−1)
u (x). The shares are derived from a symmetric polynomial f (t−1)(x, y) by

setting y = αu (see Fig. 11). So, in the renewal phase the new shares h
(t)
v (x) are

computed.

It is not difficult to verify that indeed A. We have new sharing for the

same secret and B. The “symmetry” is not destroyed, i. e. the pair-wise check

h
(t)
v (αu) = h

(t)
u (αv) still holds for every u, v. The latter implies that there exists a

symmetric polynomial f (t)(x, y) such that f (t)(0, 0) = s and h
(t)
v (x) = f (t)(x, αv).

Suppose now that the attacker has corrupted player Pv in some time frame

t − 1, i. e. he knows his share h
(t−1)
v (x). Then Pv being detected as corrupt is



356 Ventzislav Nikov, Svetla Nikova, Bart Preneel

A Simple Re-Sharing Protocol

Re-Sharing Phase:

1. Each player Pu re-shares the “true part” of his share, i. e. h
(t−1)
u (0),

by choosing a symmetric polynomial δ
(t−1)
u (x, y) of degree k such that

δ
(t−1)
u (x, 0) = hu(x).

2. Player Pu sends to Pv (1 ≤ v ≤ n) temporary shares δ
(t−1)
u;v (x) =

δ
(t−1)
u (x, αv).

3. Each pair of players Pv and Pw performs the usual pairwise-check:

δ
(t−1)
u;v (αw) = δ

(t−1)
u;w (αv).

4. In addition, each Pv checks his “true part” of the temporary share

δ(t−1)
u;v (0) = δ(t−1)

u (0, αv) = h(t−1)
u (αv) = h(t−1)

v (αu).

The last equality is the pair-wise check in the VSS used to distribute the
secret s. Note that this additional check ensures that player Pu really
re-shares his share, i. e., he is an honest “dealer”, and that player Pv

has a consistent “true part” of the temporary share.

5. All players agree on a set of “good”, qualified players A, which were not
accused as corrupt dealers. Let ru be the constants which correspond
to players Pu ∈ A.

6. Each player Pv computes his new-share as follows:

h(t)
v (x)←−

∑

u∈A

ru δ
(t−1)
u;v (x).

Fig. 8. A Simple Re-Sharing Protocol

“rebooted” and in the renewal phase his share is updated. Note that δ
(t−1)
u;v (0) =

h
(t−1)
v (αu) holds. But the attacker is able to compute

∑
u∈A ru δ

(t−1)
u;v (0) =

∑
u∈A ru h

(t−1)
v (αu). Thus he knows the “true part” of the Pv ’s new share, namely

h
(t)
v (0) =

∑
u∈A ru δ

(t−1)
u;v (0). Recall that the knowledge of the “true part” of the

shares is enough for reconstructing the secret. Therefore, again incrementally
breaking different sets of players the attacker is able to compute the secret.

6.2. Re-Sharing Protocol with Randomization. Another drawback
of the protocol described in the previous section is that the “true parts” of the



On Proactive Verifiable Secret Sharing Schemes 357

shares are not re-randomized. That is why in this section we will avoid this
drawback using a commitment transfer protocol and proposing a more efficient
commitment sharing protocol which preserve the symmetry (see [1]).

As in the previous section we consider the following scenario see Fig. 9.

Every player Pu holds a share h
(t−1)
u (x). The shares are derived from a symmetric

polynomial f (t−1)(x, y) by setting y = αu (see Fig. 11).

Re-Sharing Protocol with Randomization

Re-Sharing Phase:

1. Each player Pu re-shares the “true part” of his share, i. e. h
(t−1)
u (0), by

choosing a symmetric polynomial δ
(t−1)
u (x, y) of degree k.

2. Player Pu plays the role of the dealer executing Share-Detection phase.

3. As a result every player Pv posses a share δ
(t−1)
u;v (x) polynomial of degree

k, if Pu is not blamed as a corrupt dealer.

4. In order to prove that the shared secret is indeed h
(t−1)
u (0), Pu

broadcasts a k-degree polynomial g
(t−1)
u (x) = h

(t−1)
u (x) − δ

(t−1)
u (x, 0).

Note that if Pu is honest dealer then g
(t−1)
u (0) = 0 holds.

5. Each player Pv verifies that g
(t−1)
u (0) = 0 and that

g(t−1)
u (αv) = h(t−1)

u (αv)− δ(t−1)
u (αu, 0) = h(t−1)

v (αu)− δ(t−1)
u;v (0).

If these relations are satisfied he accepts his auxiliary share, otherwise
an accusation against Pu is broadcast.

6. Let A be the set of uncorrupt, qualified players. Let ru be the constants
which correspond to players Pu ∈ A.

7. Each player Pv computes his new-share as follows:

h(t)
v (x)←−

∑

u∈A

ru δ
(t−1)
u;v (x).

Fig. 9. Re-Sharing Protocol with Randomization

In the same way as in the previous section it is not difficult to verify that
the conditions A. and B. are satisfied.

Suppose now that the attacker has corrupted player Pv in some time

frame t − 1, i. e. he knows his share h
(t−1)
v (x). Then Pv being detected as



358 Ventzislav Nikov, Svetla Nikova, Bart Preneel

corrupt is “rebooted” and in the renewal phase his share is updated. Note that

δ
(t−1)
u;v (0) = h

(t−1)
v (αu)−g

(t−1)
u (αv) and that g

(t−1)
u (x) is public. Thus the attacker

is able to compute
∑

u∈A ruδ
(t−1)
u;v (0) =

∑
u∈A ru (h

(t−1)
v (αu) − g

(t−1)
u (αv)). He

knows the “true part” of the Pv’s new share, namely h
(t)
v (0) =

∑
u∈A ru δ

(t−1)
u;v (0).

Therefore, again incrementally breaking different sets of players the attacker is
able to compute the secret.

On the negative side we do not know unconditionally secure perfect
proactive VSS protocols, based on the considered approach (to re-share the
player’s shares). On the positive side now we can improve the conditions for
security of computationally secure proactive VSS (Theorem 5.1).

Theorem 6.1. A (k, n) threshold scheme is a proactive VSS computa-
tionally secure against a (k, ka)-adversary exists if and only if n > k + ka.

7. Conclusions. We have shown that several unconditionally secure
schemes can be broken when mobile adversary is considered, while the same
protocols remain secure in case the adversary is not mobile. In conclusion we have
shown several specific weaknesses. It is an open question in the unconditional
case whether we can do better than Theorem 5.1 and Theorem 5.2, using for
example the re-sharing approach instead of commitment to 0.

REFERE NCES

[1] Cramer R., I. Damgard, U. Maurer. General Secure Multi-Party
Computation from any Linear Secret Sharing Scheme,. EUROCRYPT’2000,
LNCS 1807, Springer-Verlag, 2000, 316–334.

[2] D’Arco P., D. Stinson. On Unconditionally Secure Proactive Secret
Sharing Scheme and Distributed Key Distribution Centers. Manuscript, May
2002.

[3] D’Arco P., D. Stinson. On Unconditionally Secure Robust Distributed
Key Distribution Centers. ASIACRYPT’2002, LNCS 2501, Springer-Verlag,
2002, 346–363.

[4] Feldman P. A practical scheme for non-interactive verifiable secret sharing.
FOCS’1987, 427–437.



On Proactive Verifiable Secret Sharing Schemes 359

[5] Frankel Y., P. Gemmell, P. MacKenzie, M. Yung. Proactive RSA.
CRYPTO’1997, LNCS 1294, Springer-Verlag, 1997, 440–454.

[6] Frankel Y., P. Gemmell, P. MacKenzie, M. Yung. Optimal-resilience
proactive public-key cryptosystems. FOCS’1997, 384–393.

[7] Jarecki S. Proactive Secret Sharing and Publik Key Cryptosystems. M.Sc.
Thesis, 1995, MIT.

[8] Gennaro R., S. Jarecki, H. Krawczyk, T. Rabin. Secure Distributed
Key Generation for Discrete-Log Based Cryptosystems. EUROCRYPT’1999,
LNCS 1592, Springer-Verlag, 1999, 295–310.

[9] Herzberg A. S. Jarecki, H. Krawczyk, M. Yung. Proactive secret
sharing or: How to cope with perpetual leakage. CRYPTO’1995, LNCS 963,
Springer-Verlag, 1995, 339–352, (extended version 1998).

[10] Herzberg A., M. Jakobsson, S. Jarecki, H. Krawczyk, M. Yung.

Proactive Public Key and Signature Systems. ACM’1997—Computer and
Communication Security. Springer-Verlag, 1997, 100–110.

[11] Nikov V., S. Nikova, B. Preneel, J. Vandewalle. Applying General
Access Structure to Proactive Secret Sharing Schemes. Proc. Benelux, 2002,
197–206, Cryptology ePrint Archive: Report 2002/141.

[12] Nikov V., S. Nikova, B. Preneel, J. Vandewalle. On Distributed Key
Distribution Centers and Unconditionally Secure Proactive Verifiable Secret
Sharing Schemes based on General Access Structure. INDOCRYPT’2002,
LNCS 2551, Springer-Verlag, 2002, 422–437.

[13] Nikov V., S. Nikova. On Proactive Secret Sharing Schemes. SAC’2004,
LNCS 3357, Springer-Verlag, 2004, 314–331.

[14] Ostrovsky R., M. Yung. How to withstand mobile virus attack.
PODC’1991, 51–59.

[15] Pedersen T. Non-Interactive and Information-Theoretic Secure Verifiable
Secret Sharing. CRYPTO’1991, LNCS 547, 129–140.

[16] Stinson D., R. Wei. Unconditionally Secure Proactive Secret Sharing
Scheme with combinatorial Structures. SAC’1999, LNCS 1758, Springer-
Verlag, 1999, 200–214.



360 Ventzislav Nikov, Svetla Nikova, Bart Preneel

8. Appendix We first present Feldman’s computational secure VSS
protocol (see Fig. 10).

Feldman’s—VSS [4]

Sharing Phase:
Let s be a secret from F = Zp. Let g be a randomly chosen generator of a
(multiplicative) group G of prime order q. Each player Pi is associated publicly
with a non-zero element αi ∈ F, so |P| < |F|.

1. Dealer D chooses a random polynomial f(x) over F of degree k subject
to the condition f(0) = s.

2. Each share si is computed by D from si = f(αi) and then transmitted
privately to player Pi.

3. Let f(x) =
∑k

j=0 ajx
j . The dealer broadcasts the values (commitments)

Cj = gaj for j = 0, 1, . . . , k.

Detection Phase:

1. Each player Pi verifies his own share by checking the following equation:

gsi =
∏k

j=o C
α

j

i

j . If the equation does not hold the player broadcasts an
accusation to the dealer.

2. If there are more than ka accusations to the dealer then D is blamed
corrupt, and the protocol is stopped.

Reconstruction Phase:

1. Each player Pi broadcasts si.

2. Take k + 1 broadcast values for which gsi =
∏k

j=0 C
α

j

i

j holds.

3. Determine f̃(x) of degree at most k that passes through these points.

Output f̃(0).

Fig. 10. Feldman’s—VSS [4]

Next we present two unconditional secure VSS protocols. The first one
is based on symmetric bivariate polynomials and the second protocol is based on
non-symmetric bivariate polynomials (see Fig. 11 and Fig. 12).

Remark 8.1. Notice that the roles of the polynomials hv(x) and gv(y)
in the protocol of Fig. 12 are symmetric. Indeed, in the reconstruction phase a
player Pu can also compute a polynomial fu(x, 0), such that fu(αv , 0) = gv(0) for



On Proactive Verifiable Secret Sharing Schemes 361

those v with Pv ∈ Ã and then he can again compute s′ = fu(0, 0).

VSS—symmetric polynomial

Sharing Phase:
Let s be a secret from some finite field F. Each player Pu is associated publicly
with a non-zero element αu ∈ F, so |P| < |F|.

1. Dealer D chooses a random symmetric polynomial f(x, y) =∑k

i=0

∑k

j=0 ai,jx
iyj over F, where a0,0 = s and ai,j = aj,i.

2. Then, for each player Pu, D sends hu(x) = f(x, αu) to Pu through a
private channel.

Detection Phase:

1. Player Pu sends hu(αv) to Pv for 1 ≤ v ≤ n, (v 6= u).

2. Each player Pv checks whether hv(αu) = hu(αv) for 1 ≤ v ≤ n, (v 6= u).
If Pv finds that this is not true, then Pv broadcasts an accusation to Pu.

3. For each player Pu, who has been accused by a qualified group of players,
the dealer must broadcast his share hu(x). Then each player again
performs all relevant verifications on the values broadcast by the dealer
and those known to him and accuses D if there is an inconsistency. The
dealer defends himself by broadcasting back the share of the accusing
player. This process continues until no new accusations are made.

4. Each player Pu computes the maximum subset A ⊆ P , such that no
player in A accused another player in A. If |A| ≥ n − ka, then Pu

accepts his share. Otherwise, Pu accuses the dealer.

5. If there are more than ka accusations to the dealer then D is blamed
corrupt, and the protocol is stopped.

Reconstruction Phase

1. Each player Pv ∈ A sends hv(0) to each Pu ∈ A.

2. After having received the hv(0)’s, Pu computes a polynomial fu(0, y),
such that fu(0, αv) = hv(0) for all v with Pv ∈ A using error-correction
techniques, e. g. Reed-Solomon codes for efficiency reasons.

3. The player Pu computes and outputs s′ = fu(0, 0).

Fig. 11. Threshold VSS (symmetric case)

Next we present a general access structure unconditional secure VSS
protocol (see Fig. 13).



362 Ventzislav Nikov, Svetla Nikova, Bart Preneel

VSS—asymmetric polynomial

Sharing Phase:
Let s be a secret from some finite field F. Each player Pi is associated publicly
with a non-zero element αi ∈ F, so |P| < |F|.

1. Dealer D chooses a random polynomial f(x, y) =
∑k

i=0

∑k
j=0 ai,jx

iyj ,
where ai,j ∈ F and a0,0 = s.

2. Then, for each player Pu, D sends hu(x) = f(x, αu) and gu(y) = f(αu, y)
to Pu through a private channel.

Detection Phase:

1. Player Pu checks whether hu(αu) = gu(αu). If this condition is not
satisfied he broadcasts an accusation on the dealer.

2. Next, player Pu sends gu(αv) to Pv for 1 ≤ v ≤ n, (v 6= u).

3. Each player Pv checks whether hv(αu) = gu(αv) for 1 ≤ v ≤ n, (v 6= u).
If Pv finds that this is not true, then Pv broadcasts an accusation to Pu.

4. For each player Pu, who has been accused by a qualified group of
players, the dealer must broadcast his shares hu(x) and gu(y). Then each
player again performs all relevant verifications on the values broadcast
by the dealer and those known to him and accuses D if there is an
inconsistency. The dealer defends himself by broadcasting back the share
of the accusing player. This process continues until no new accusations
are made.

5. Each player Pu computes the maximum subset A ⊆ P , such that no
player in A accused another player in A. If |A| ≥ n − ka, then Pu

accepts his share. Otherwise, Pu accuses the dealer.

6. If there are more than ka accusations to the dealer then D is blamed
corrupt, and the protocol is stopped.

Reconstruction Phase

1. Each player Pv ∈ A sends hv(0) to each Pu ∈ A.

2. After having received the hv(0)’s, Pu computes a polynomial fu(0, y),
such that fu(0, αv) = hv(0) for all v with Pv ∈ A using error-correction
techniques for Reed-Solomon codes.

3. The player Pu computes and outputs s′ = fu(0, 0).

Fig. 12. Threshold VSS (asymmetric case)



On Proactive Verifiable Secret Sharing Schemes 363

VSS—general case [11]

Sharing Phase:

1. Dealer D chooses at random a symmetric d × d matrix R subject to s
(the secret) being in its upper left corner.

2. Dealer D gives share Ui = MiR to player Pi (Ui is a |ϕ(Pi)|×d matrix).
We call the first column of Ui (i. e. Uiε) the “true part” of the share.

Detection Phase:

1. The player Pi computes the |ϕ(Pi)|× |ϕ(Pj)| check matrix Cij = UiM
T
j

and, for all j 6= i, sends it privately to Pj .

2. Each player Pj checks for all j 6= i whether CT
ij = Cji. If Pj finds that

this is not true then Pj broadcasts an accusation to Pi.

3. For each player Pi, who has been accused by a qualified group of players,
the dealer must broadcast his share Ui. Then each player again performs
all relevant verifications on the values broadcast by the dealer and those
known to him and accuses D if there is any inconsistency. The dealer
defends himself by broadcasting back the share of the accusing player.
This process continues until no new accusations are made.

4. Each player Pi computes the maximum subset A ⊆ P , such that no
player in A accused another player in A (i. e. is consistent). If Ac ∈ ∆A,
then Pi accepts his share, otherwise Pu accuses the dealer.

5. If the group of players that have broadcast an accusation to the dealer
is not in ∆A, then D is declared corrupt, and the protocol is stopped.

Reconstruction Phase:

1. Each player Pi ∈ A sends Ui to each Pj ∈ A.

2. After receiving all shares of the players in A, Pj again applies the non-
interactive pair-wise checking for all received matrices and computes a
subset of consistent shares B ⊆ A and B ∈ Γ.

3. Next, since B ∈ Γ, Pj computes a recombination vector λ such that
MT

Bλ = ε.

4. Finally, the secret is computed as s = 〈λ, UBε〉.

Fig. 13. VSS—general case [11]



364 Ventzislav Nikov, Svetla Nikova, Bart Preneel

Ventzislav Nikov

Innovation and Development Center Leuven

NXP Semiconductors, Belgium

e-mail: venci.nikov@gmail.com

Svetla Nikova, Bart Preneel

Department Electrical Engineering

ESAT/COSIC

Katholieke Universiteit Leuven

Kasteelpark Arenberg 10

B-3001 Heverlee-Leuven, Belgium

e-mail: svetla.nikova

e-mail: bart.preneel@esat.kuleuven.be

Received March 30, 2007

Final Accepted September 13, 2007


