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Abstract. This paper is about unconditionally secure distributed protocols
for oblivious transfer, as proposed by Naor and Pinkas and generalized by
Blundo et al. In this setting a Sender has ζ secrets and a Receiver is
interested in one of them. The Sender distributes the information about
the secrets to n servers, and a Receiver must contact a threshold of the
servers in order to compute the secret. We present a non-existence result
and a lower bound for the existence of one-round, threshold, distributed
oblivious transfer protocols, generalizing the results of Blundo et al. A
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1. Introduction. Oblivious Transfer (OT) refers to several types of two-

party protocols where at the beginning of the protocol one party, the Sender, has

an input, and at the end of the protocol the other party, the Receiver (sometimes

called the chooser), learns some information about this input in a way that does

not allow the Sender to figure out what the Receiver has learned. Introduced by

M. Rabin in [20], and subsequently defined in different forms in [13, 1], oblivious

transfer has found many applications in cryptographic schemes and protocol

designs. A variety of slightly different definitions and implementations can be

found in the literature as well as papers addressing issues such as the relation of

OT with other cryptographic primitives (e. g., see [4, 6, 2, 12, 11, 17]).

The Private Information Retrieval (PIR) and Symmetric Private Infor-

mation Retrieval (SPIR) Schemes, introduced in [7, 15], represent another closely

related area. A PIR Scheme enables a user to retrieve an item of information

from a public accessible database in such a way that the database manager cannot

figure out from the query which item the user is interested in. However, the

user can get information about more than one item. On the other hand, in

SPIR schemes the user can get information about one and only one item, i. e.,

even the privacy of the database is considered. In PIR and SPIR schemes the

emphasis is placed on the communication complexity of the interaction between

user and servers. Other interesting PIR papers for the distributed OT scenario

are [5, 9, 14].

Rivest’s model given in [21] utilizes a trusted initializer, who participates

only in an initial setup phase. The setting of the scheme is similar to the one

described in [16] and considered in this paper. In [22] the author deals with

distributed oblivious transfer implementations, similar to the settings in [16], but

not unconditionally secure.

In this paper we are dealing with unconditionally secure distributed oblivi-

ous transfer protocols, as introduced by Naor and Pinkas in [16] and generalized by

Blundo et al. in [3]. Distributed Oblivious Transfer (DOT) protocols distribute

the task of the Sender between several servers. Security is ensured as long as

a limited number of these servers collude (the threshold case). Since in many

natural scenarios the assumption that trust is “uniformly distributed” over the

players does not model the reality well we want the scheme to be secure in case

of general access structures. We extend the threshold model to general access

structure DOT scheme.

The paper is organized as follows. In Sect. 2 we introduce multiplicative

linear secret sharing schemes and multi-party computation. Sect. 3 is devoted
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to threshold case. We introduce the model, then prove a necessary condition for

existence of unconditionally secure DOT. A protocol achieving the proven bound

is proposed. Sect. 4 deals with the general case. Analogously we first generalize

the model, second we prove necessary condition for existence and then a protocol

is proposed. Finally we present a connection between multi-party computation

and DOT.

2. Preliminaries.

2.1. Linear Secret Sharing Schemes. Denote the participants of a

Secret Sharing Scheme (SSS) by Pi, 1 ≤ i ≤ n, and the set of all players by

P = {P1, . . . , Pn}. Denote the dealer of the scheme by D. The role of the dealer

is to share a secret s to all participants in the scheme. The simplest access

structure Γ is called a (k, n)-threshold: all subsets of players P with at least

k + 1 participants are qualified to reconstruct the secret and any subset of up

to k players are forbidden of doing it. Accordingly we will call a Secret Sharing

Scheme (SSS) (k, n)-threshold if the access structure Γ associated with it is (k, n)-

threshold. It is well known that all threshold SSS protocols can be generalized for

general access structures using Monotone Span Programs (see Cramer et al. [8]).

Denote the set of all subsets of P (i. e. the power set of P) by P (P). The set of

qualified groups is denoted by Γ and the set of forbidden groups by ∆. The set Γ

is called monotone increasing if for each set A in Γ each set containing A is also

in Γ. Similarly, ∆ is called monotone decreasing if for each set B in ∆ each subset

of B is also in ∆. The tuple (Γ,∆) is called an access structure if Γ ∩ ∆ = ∅. If

the union of Γ and ∆ is equal to P (P) (so, Γ is equal to ∆c, the complement of

∆), then we say that access structure (Γ,∆) is complete and we denote it just by

Γ. For a complete access structure the dual access structure could be defined as

follows. The dual access structure Γ⊥ of an access structure Γ, defined on P, is

the collection of sets A ⊆ P such that P \ A = Ac /∈ Γ.

It is common to model cheating by considering an adversary A who may

corrupt some of the players passively and some actively. Passive corruption means

that the adversary obtains the complete information held by the corrupt players,

but the players execute the protocol correctly. Active corruption means that

the adversary takes full control of the corrupt players. Thus the adversary A

is characterized by a particular subset ∆A of ∆, which is itself a monotone

decreasing structure. The set ∆A (∆A ⊆ ∆) is called an adversary structure

while the set ∆ is called a privacy structure. The players which belong to ∆
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are also called curious and the players which belong to ∆A are called corrupt.

An (∆,∆A)-adversary is an adversary who can (adaptively) corrupt some players

passively and some players actively, as long as the set A of actively corrupt players

and the set B of passively corrupt players satisfy both A ∈ ∆A and (A∪B) ∈ ∆.

Now we give a formal definition of a Monotone Span Program.

Definition 2.1 [8]. A Monotone Span Program (MSP) M is a quadruple

(F,M, ε, ψ), where F is a finite field, M is a matrix (with m rows and d ≤ m

columns) over F, ψ : {1, . . . ,m} → {1, . . . , n} is a surjective function and ε =

(1, 0, . . . , 0)T ∈ F d is called the target vector.

As ψ labels each row with an integer i from [1, . . . ,m] that corresponds

to player Pψ(i), we can think of each player as being the “owner” of one or more

rows. Also consider a “function” ϕ from [1, . . . , n] to [1, . . . ,m] which gives for

every player Pi the set of rows owned by him (denoted by ϕ(Pi)). In some

sense ϕ is the “inverse” of ψ. Let MA denote the restriction of M to the rows

i with i ∈ A. An MSP is said to compute a (complete) access structure Γ when

ε ∈ im(MT
A ) if and only if A is a member of Γ. We denote such an access structure

by Γ(M). We say that A is accepted by M if and only if A ∈ Γ, otherwise we

say A is rejected by M. In other words, the players in A can reconstruct the

secret precisely if the rows they own contain in their linear span the target vector

of M, and otherwise they get no information about the secret. Hence when a

set A is accepted by M there exists a so-called recombination vector (column)

λ such that MT
Aλ = ε. Notice that the vector ε /∈ im(M T

B ) if and only if

there exists a vector k ∈ Fd such that MBk = 0 and k1 = 1. For any two

monotone decreasing sets ∆1,∆2 the operation element-wise union ] is defined

as follows: ∆1 ]∆2 = {A = A1 ∪A2;A1 ∈ ∆1, A2 ∈ ∆2}. For any two monotone

increasing sets Γ1,Γ2 the operation element-wise union ] is defined as follows:

Γ1 ] Γ2 = {A = A1 ∪A2;A1 /∈ Γ1, A2 /∈ Γ2}
c.

2.2. Multiplicative Linear SSSs. Cramer et al. proposed in [8] an

approach to build a Multi-Party Computation (MPC) protocol from any Linear

SSS introducing so-called (strongly) multiplicative LSSS. The construction for

multiplicative MSPs was extended in [19] by proposing the diamond operation �.

Next we provide the definition and some basic properties of this operation.

Let Γ1 and Γ2 be two access structures, computed by MSPs M1 =

(F,M (1), ε1, ψ1) and M2 = (F,M (2), ε2, ψ2). Let M (1) be an m1 × d1 matrix,

M (2) be an m2 × d2 matrix, and let ϕ1, ϕ2 be the “inverse” functions of ψ1 and
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ψ2. Consider a vector x. Let the coordinates in x which belong to the player

Pj form a sub-vector xj ∈ F|ϕ(Pj)| and let x = (x1, . . . ,xn). Given an m1-vector

x and an m2-vector y, x � y will denote the vector containing all entries of the

form xiyj, where ψ1(i) = ψ2(j). Thus the diamond operation � for vectors can

be defined as follows:

x � y = (x1 ⊗ y1, . . . ,xn ⊗ yn) ,(1)

where ⊗ is the usual tensor vector product. So, x�y hasm =
∑

Pu∈P
|ϕ1(u)||ϕ2(u)|

entries, and note that m < m1m2. Let M
(1)
u denote the matrix formed by the

rows of M (1) owned by player Pu. Correspondingly, let M
(2)
u denote the matrix

formed by the rows of M (2) owned by player Pu. Then M
(1)
u is an |ϕ1(u)| × d1

matrix and M
(2)
u is an |ϕ2(u)| × d2 matrix. Now the diamond operation � for

matrices can be defined as follows:

M (1) =




M
(1)
1

. . .

M
(1)
n


 , M (2) =




M
(2)
1

. . .

M
(2)
n


 , and

M (1) �M (2) =




M
(1)
1 ⊗M

(2)
1

. . .

M
(1)
n ⊗M

(2)
n


 .(2)

In other words, the diamond operation � for vectors (and analogously for matrices)

is defined as the concatenation of vectors (matrices) which are the tensor (⊗)

multiplication of the sub-vectors (sub-matrices) belonging to a fixed player.

The diamond operation � for MSPs is defined as follows:

Definition 2.2 [19]. Let MSPs M1 = (F,M (1), ε1, ψ1) and M2 =

(F,M (2),

ε2, ψ2). Define an MSP M1�M2 = (F,M (1)�M (2), ε1⊗ε2, ψ), where ψ(i, j) = r

if and only if ψ1(i) = ψ2(j) = r.

Lemma 2.3 [19]. Let M (1) be an m1×d1 matrix and M (2) be an m2×d2

matrix, N (1) be an n1 ×m1 matrix and N (1) be n2 ×m2 matrix. Let a ∈ Fd1 ,
b ∈ Fd2 be column vectors, then the following equalities hold:

(M (1) �M (2)) (a ⊗ b) = (M (1)a) � (M (2)b)

(N (1) M (1)) � (N (2) M (2)) = (N (1) �N (2))(M (1) ⊗M (2)).
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Note that the diamond operation � confirms our intuitive expectations

that the players can locally compute their new shares. Moreover, the next lemma

shows that a (strongly) multiplicative product MSP computes the product of the

secrets shared by the MSPs M1 and M2.

Theorem 2.4 [19]. Let s1 = M (1)(s1,a) and s2 = M (2)(s2,b) be the

shares distributed by the MSPs M1 and M2, for secrets s1 and s2 respectively.

Then s1 � s2 are the shares distributed by the MSP M1 �M2 for the secret s1s2.

2.3. Multi-Party Computation. The goal of multi-party computation

(MPC) is to enable a set of players to evaluate an arbitrary function on their

private inputs. The computation must guarantee the correctness of the result

while preserving the privacy of the players’ inputs, even if some of the players

are corrupted by an adversary and misbehave in an arbitrary way. Consider

n players, each player Pi holding an input xi. The players want to compute a

function F (x1, . . . , xn) = (y1, . . . , yn) in a secure manner, which intuitively means

that the adversary cannot disrupt the computation, i. e. the value computed is

correct. Furthermore the adversary should not learn any information about the

inputs of the good players (except for what is related to the function value).

We consider an adversary with two privacy structures ∆1, ∆2 and with

one adversary structure ∆A ⊆ ∆1, ∆A ⊆ ∆2, let us call it a (∆1,∆2,∆A)-

adversary.

Definition 2.5. We call an MSP M trivial if Γ(M)− = {{P1}, . . . , {Pn}}.

Thus a trivial M has an n× 1 matrix M =




1
...

1


.

Remark 2.6. Let M be a trivial MSP and let M̃ be an MSP. It is easy

to verify that M̃ = M� M̃ and hence Γ(M� M̃) = Γ(M̃).

So, trivial MSPs play the role of a unit for diamond operation. In the

next definition we require more interesting properties to hold.

Definition 2.7 [19].

• We call M a product MSP if there exist non-trivial MSPs M1 and M2

such that M = M1 �M2.
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• We call M a multiplicative product MSP if M is product MSP and Γ(M) =

{P}.

• We call M a strongly multiplicative product MSP if M is product MSP

and {P} $ Γ(M).

We will not consider the case when the access structure Γ(M1 �M2) = ∅.

We call the access structure Γ(M1 �M2) diamond product access structure.

Proposition 2.8 [19]. Let M1 and M2 be MSPs, then

(3) Γ(M1 �M2) ⊆ Γ(M1) ] Γ(M2).

Define matrix E to be a zero matrix except for the entry in the upper left

corner which is 1, or in other words E = ε(ε∗)T .

Theorem 2.9 [19]. Let M and M⊥ be dual MSPs and let MTM⊥ = E.

Then Γ(M�M⊥) = {P}, i. e. M�M⊥ is a multiplicative product MSP.

Theorem 2.10 [19]. Let M = M1 � M2. Then there exists a MPC

protocol unconditionally secure against a (∆1,∆2,∆A)-adversary if

Γ⊥
A ⊆ Γ(M) ⊆ Γ(M1) ] Γ(M2), (ΓA ] ΓA)⊥ ⊆ Γ(Mi), for i = 1, 2

where ∆i = Γ(Mi)
c.

Note that in case the adversary is passive, i. e., ∆A = ∅, the theorem

requires at least M to be the multiplicative product of M1 and M2.

3. Threshold DOT.

3.1. The Model. An r-out-of-n DOT −
(
ζ
1

)
protocol involves three types

of parties:

• A Sender D which has ζ inputs (secrets) s0, s1, . . . , sζ−1. It is convenient to

assume that these inputs are elements in a finite field F.

• A Receiver R that has an input (index) σ ∈ {0, 1, . . . , ζ − 1}.

• Additional n servers, P1, P2, . . . , Pn.



320 Ventzislav Nikov, Svetla Nikova, Bart Preneel

We assume that the Sender holds ζ secrets and the Receiver is interested

in one of them. In the distributed setting the Sender D does not directly interact

with the Receiver R in order to carry out the oblivious transfer. Rather, he

delegates n servers to accomplish this task for him.

The protocol is composed of the following functional steps:

• Initialization Phase. Let P1, P2, . . . , Pn denote the servers. Sender D

generates n programs Prog1, P rog2, . . . , P rogn and, for i = 1, . . . , n, sends

in a secure way, program Progi to server Pi. Each program Progi depends

on the secrets s0, s1, . . . , sζ−1 and on some random data.

• Oblivious Transfer Phase. The Receiver R holds a program ProgR which

enables her to interact with a subset {Pi1 , . . . , Pir} of r servers at her choice.

She sends to the server Pi a query Queri which is a function of σ and i, and

of some random data. The server answers the query with Answi. Using

the answers that the Receiver R has collected, she is able to recover the

secret of her choice, receiving no information about the other secrets. At

the same time, any subset of k servers, say {Pi1 , . . . , Pik} ⊆ {Pi1 , . . . , Pir},

does not gain any information about the secret she has recovered.

A formal definition follows now.

Definition 3.1 [16, 10]. An (r, n) − DOT −
(
ζ
1

)
must guarantee the

following properties:

• Reconstruction. If the Receiver gets information from r out of the n servers,

she can compute the secret sσ.

• Sender’s Privacy. Given the information presented by a group of r servers,

the Receiver must gain information about a single secret, and no informa-

tion about the other secrets.

• Receiver’s Privacy. No coalition of up to k servers gains information about

which secret the Receiver has recovered, except what could be implied by the

inputs.

• Receiver-servers collusion. A coalition of the Receiver with up to ` corrupt

servers cannot learn about the ζ secrets more than can be learned by the

Receiver herself.
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We will follow the notations and the formal model given by Blundo et

al. in [3]. Assume that D holds a program ProgD to generate n programs

Prog1, . . . , P rogn enabling P1, . . . , Pn and R to perform (r, n) − DOT −
(
ζ
1

)

protocol of his ζ secrets. R holds an associated program ProgR for interacting

with the servers. The n+ 1 programs Prog1, . . . , P rogn and ProgR, specify the

computations to be performed to achieve (r, n) −DOT −
(
ζ
1

)
. In order to model

dishonest behavior, where a coalition of at most k servers tries to figure out

which secret R has recovered from the transfer, we assume that cheating servers

Pi1 , . . . , Pik hold a modified version of the programs, denoted by Progi1 , . . . ,

P rogik . These programs could have been generated either by a dishonest D, who

holds a cheating program ProgD, or could have been modified by the dishonest

servers. Similarly, a cheating Receiver R, who tries to gain some information

about other secrets, holds a modified version of program ProgR. These programs

can be described by random variables, denoted by D̃, P̃1, . . . , P̃n, R̃ and the

cheating programs with random variables D̃, P̃ 1, . . . , P̃ n, R̃.

An execution of the protocol can be described by using the following

additional random variables: for j = 1, . . . , n let Cj be the transcript of the

communication between R and Pj . Moreover, let W be the set of all length ζ

sequences of secrets, and, for any w ∈ W, let wi be the i-th secret of the sequence.

Let W̃ be the random variable that represents the choice of an element in W, T̃ be

the random variable representing the choice of an index σ in T = {0, 1, . . . , ζ−1}

and C̃j be the random variable corresponding to Cj. One can define (as in [3])

the conditions that an (r, n) −DOT −
(
ζ
1

)
protocol has to satisfy as follows:

Definition 3.2 [3]. For an (r, n) −DOT −
(
ζ
1

)
the sequence of programs

[ProgD, P rog1, . . . , P rogn, P rogR] is correct if for any i ∈ T and for any group

A = {Pi1 , . . . , Pir} ⊆ P = {P1, . . . , Pn},

(4) H(C̃A | P̃A T̃ R̃) = 0

and for any w ∈ W

(5) H(W̃T | C̃A T̃ R̃) = 0.

The definition above means that the transcript of the communication is

completely determined by the program of the server Pj and the program of the

Receiver and her choices. Moreover, after interacting with r servers, an honest

Receiver always recovers the secret in which she is interested.
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Assuming that both the Sender D and the Receiver R are aware of the

joint probability distribution PW ,T on W and T , the probability with which D

chooses the secrets in W and R chooses an index i ∈ T , the privacy property of

(r, n) −DOT −
(
ζ
1

)
can be defined as follows:

Definition 3.3 [3]. For an (r, n) −DOT −
(
ζ
1

)
the sequence of programs

[ProgD, P rog1, . . . , P rogn, P rogR] is private if

• for any group B1 = {Pi1 , . . . , Pik} ⊆ P

(6) H(T̃ | P̃B1
C̃B1

) = H(T̃ ),

• for any program ProgR, any group A = {Pi1 , . . . , Pir} ⊆ P, and any i ∈ T

(7) H(W̃ \ W̃T | T̃ R̃ C̃A W̃T ) = H(W̃ \ W̃T ),

• for any group B2 = {Pi1 , . . . , Pi`} ⊆ P, for any i ∈ T , and for any R̃,

(8) H(W̃ | T̃ R̃ C̃B2
P̃B2

) = H(W̃ ),

• for any groups B2 = {Pi1 , . . . , Pi`} ⊆ P and A = {Pi1 , . . . , Pir} ⊆ P, for

any i ∈ T , and for any program ProgR,

(9) H(W̃ \ W̃T | T̃ R̃ P̃B2
C̃A W̃T ) = H(W̃ \ W̃T ).

Conditions (6), (7) ensure that a dishonest coalition of k servers does

not gain information about the index of the Receiver R: a dishonest Receiver R

infers at most one secret among the ones held by P1, . . . , Pn. Condition (8) takes

into account the possibility of an attack against D performed either by at most

` servers alone or with the cooperation of the Receiver R. The condition states

that such kind of coalitions do not gain any information about the secrets held

by the Sender D. Finally, Condition (9) states that a coalition of ` servers and

the Receiver cannot compute any information about the other secrets, once the

Receiver has obtained a secret.

3.2. Conditions for Existence.Using some tools from Information The-

ory (see Appendix) and the ideas in [3] we can show that for the one round DOT
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protocol a non-existence result holds for the parameters r, k, and `. Consequently

we will prove a lower bound for the existence of a DOT with these parameters.

First of all, notice that if the protocol is one round, then Cj = (Querj ,

Answj), where Querj is the query of the Receiver and Answj is the answer of

the server. Therefore, Condition (4) can be re-phrased by saying that

(10) H(Q̃A | R̃ T̃ ) = 0 and H(ÃA | Q̃A P̃A) = 0.

With this notation, we can prove the following non-existence result:

Theorem 3.4 [18]. Let consider an (r, n) − DOT −
(
ζ
1

)
scheme with

parameters k, and `. If r ≤ k + `, then once the Receiver has legally recovered a

secret, a coalition of ` corrupt servers and the Receiver can recover all the other

secrets.

P r o o f. Let r = ` + k i. e. ` = r − k. Denote by A = {Pi1 , . . . , Pi`}

and by B = {Pi`+1
, . . . , Pir}. Let q1, . . . , qr be the queries sent by the Receiver

when T = i, and let a1, . . . , ar be the answers that the servers P1, . . . , Pr send

back to R. The Receiver’s security property (6) with respect to k servers, say

P`+1, . . . , Pr, implies that there exist queries qσA and answers aσA for any σ 6= i,

such that if

H(W̃i | Q̃A∪B = qA∪B ÃA∪B = aA∪B) = 0

then

H(W̃σ | Q̃A = qσA Q̃B = qB ÃA = aσA ÃB = aB) = 0.

Since the answers given by the servers in A depend only on their own programs

Prog1, . . . , P rog` and on the received queries (i. e. H(ÃA | Q̃A P̃A) = 0) it follows

that

H(W̃ | P̃A ÃB Q̃B R̃) = 0.

Indeed

H(W̃ | P̃A ÃB Q̃B R̃) ≤
∑

t∈T

H(W̃t | P̃A ÃB Q̃B R̃ T̃ = t)

and

H(W̃t | P̃A ÃB Q̃B R̃ T̃ = t) ≤ H(W̃t | P̃A ÃB Q̃A∪B)

≤ H(W̃t | ÃA∪B Q̃A∪B) = 0.

Therefore the Receiver and a coalition of ` servers can recover all the secrets and

the bound holds. �
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The last theorem is a natural extension of [3, Theorem 3.5], where the

case r = k − 1, ` = 1 is considered.

A consequence of this non-existence result for one-round protocols is the

following lower bound for the existence of a DOT with parameters r, k, and `.

Corollary 3.5 [18]. A necessary and sufficient condition for the existence

of an (r, n) −DOT −
(
ζ
1

)
scheme with parameters k and ` is

r > k + `.

P r o o f. The necessary condition follows directly from Theorem 3.4. In

the next section the protocol implementing (r, n) − DOT −
(
ζ
1

)
scheme with

parameters k, ` and satisfying r = k + ` + 1 will be presented in Fig. 2, which

proves the sufficient condition. �

Note that two-round protocols, as for example the one proposed in [3],

satisfy the same bound, because contacting η servers twice can be viewed as

contacting 2η servers once. Hence r = 2η, ` = η and k = η−1 are the appropriate

parameters for the existence of the DOT.

3.3. A Protocol. Two protocols for (r, n) − DOT −
(2
1

)
have been

proposed by Naor and Pinkas in [16]. Recently Blundo et al. in [3] generalized

the idea of Naor and Pinkas and proposed several protocols for (r, n)−DOT−
(
ζ
1

)
.

The protocols proposed by Naor and Pinkas and two of the protocols in [3] are

based on polynomial interpolation. Combinatorial constructions are presented

in [3] as well.

First we present the protocol proposed by Blundo et al. in [3]. Then

we propose a protocol, based also on a polynomial interpolation, which is a

generalization of the protocols of Naor and Pinkas and Blundo et al. The

protocols are described in Fig. 1 and Fig. 2.

As we have noted before the protocol proposed by Blundo et al. in [3] is

(r, n) −DOT −
(
ζ
1

)
with parameters k = r − 1 and ` = 1.

Theorem 3.6 [18]. The protocol described in Fig. 2 implements an

(r, n) −DOT −
(
ζ
1

)
scheme with parameters k, `.

P r o o f. The correctness of the proposed protocol: The degree of polyno-

mial V (x) is r − 1, hence after receiving r values in Step 3 the Receiver is able

to recover V (x) correctly and to calculate V (0). On the other hand, assuming
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that (D1(0), . . . , Dζ−1(0)) = (0, . . . , 0, 1, 0, . . . , 0) (i. e., at most a 1 in position

σ), then

V (0) = Q(0, D1(0), . . . , Dζ−1(0)) = Q(0, 0, . . . , 0, 1, 0, . . . , 0) = sσ.

Now we will see that the proposed protocol for (r, n)−DOT−
(
ζ
1

)
satisfies

the four properties of Definition 3.1. The Reconstruction follows from the Cor-

rectness.

The Receiver’s Privacy is guaranteed against coalitions of at most k

servers, because R herself chooses polynomials D1(x), . . . , Dζ−1(x) to have degree

k. Again using the proof for correctness of the proposed protocol it follows that

the Sender’s Privacy is guaranteed. And finally, the Receiver-servers collusion

is guaranteed assuming that the Receiver has already calculated one secret and

that a coalition of at most ` corrupt servers helps her to discover others. Because

the Sender D chooses the polynomials B1(x), . . . , Bζ−1(x) of degree ` and a

polynomial B0(x) of degree r − 1 ≥ ` + k, the information that these ` corrupt

servers possess (i. e. B0(αij ), B1(αij ), . . . , Bζ−1(αij ) for j = 1, . . . , `) is insuffi-

cient to recover any of the polynomials B0(x), B1(x), . . . , Bζ−1(x), hence it is

insufficient to find any of the values B0(0), B1(0), . . . , Bζ−1(0). �

Remark 3.7 [18]. The proposed protocol in Fig. 2 satisfies r = `+k+1,

which proves the “sufficient” part in the proof of Corollary 3.5.

Comparing our scheme with the polynomial scheme of Blundo et al. we

note that both are equal w.r.t. the following parameters: the memory storage

of the servers, the complexity of each interaction, the required randomness to

set up the scheme and the randomness of the whole communication. The scheme

proposed here achieves the bounds of [3, Theorems 3.1, 3.2, 3.3, 3.4]. The memory

storage requirement for the Sender and the Receiver is higher in our scheme, due

to its better security.

One of the questions that Naor and Pinkas have posed is how the scheme

will ensure that a Receiver does not obtain more than r shares. It is clear that in

our scheme the Sender can choose n = r, and solve this problem thus providing

the desired security.

4. General Access Structure DOT. Recall that threshold-based

schemes make sense only in an environment where one assumes that any subset

of players of a certain cardinality is equally likely (or unlikely) to cheat (or to be
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(r, n) −DOT −
(
ζ
1

)
[3]

Initialization Phase:

Let s0, s1, . . . , sζ−1 ∈ F be the secrets of Sender D. Each server Pi is associated
publicly with a non-zero element αi ∈ F, so |P| < |F|.

1. Sender D generates a random polynomial A(x) of degree (r − 1) with
values in F such that A(0) = s0.

2. Then, D constructs an ζ-variate polynomial Q(x, y1, . . . , yζ−1) with
values in F such that Q(0, 0, . . . , 0) = s0, Q(0, 1, 0, . . . , 0) =
s1, . . . , Q(0, 0, . . . , 1) = sζ−1. More precisely,

Q(x, y1, . . . , yζ−1) = A(x) +

ζ−1∑

j=1

bjyj ,

where bi = si − s0.

3. Finally, for i = 1, . . . , n, he sends the (ζ − 1)-variate polynomial
Q(αi, y1, . . . , yζ−1) to server Pi.

Oblivious Transfer Phase:

Let σ ∈ {0, 1, . . . , ζ − 1} be the index of Receiver R.

1. Receiver R generates (ζ−1) random polynomials D1(x), . . . , Dζ−1(x) of
degree (r− 1) such that (D1(0), . . . , Dζ−1(0)) is an (ζ − 1)-tuple of only
zeroes except possibly for a 1 at position σ, the position corresponding
to the secret in which she is interested. Define a univariate polynomial
V (x) by V (x) = Q(x,D1(x), . . . , Dζ−1(x)). The degree of V (x) is (r−1).

2. Then, R asks r servers Pij
for j = 1, . . . , r, by sending a query of the

form (D1(αij
), . . . , Dζ−1(αij

)).

3. Server Pij
calculates the value Q(αij

, D1(αij
), . . . , Dζ−1(αij

)) = V (αij
)

and sends it back to Receiver R.

4. After receiving r values of V (x), say V (αi1), . . . , V (αir
), R interpolates

V (x) and computes V (0).

Fig. 1. (r, n) −DOT −
(
ζ
1

)
[3]
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(r, n) −DOT −
(
ζ
1

)
[18]

Initialization Phase:

Let s0, s1, . . . , sζ−1 ∈ F be the secret of Sender D. Each server Pi is associated
publicly with a non-zero element αi ∈ F, so |P| < |F|.

1. Sender D generates (ζ − 1) random polynomials B1(x), . . . , Bζ−1(x) of
degree ` and one random polynomial B0(x) of degree r − 1 ≥ ` + k
with values in F such that B0(0) = s0 and, for i = 1, . . . , ζ − 1, si =
B0(0) +Bi(0).

2. Then, D constructs an ζ-variate polynomial Q(x, y1, . . . , yζ−1) with
values in F such that Q(0, 0, . . . , 0) = s0, Q(0, 1, 0, . . . , 0) =
s1, . . . , Q(0, 0, . . . , 1) = sζ−1. More precisely,

Q(x, y1, . . . , yζ−1) = B0(x) +

ζ−1∑

j=1

Bj(x)yj .

3. Finally, for i = 1, . . . , n, he sends the (ζ − 1)-variate polynomial
Q(αi, y1, . . . , yζ−1) to server Pi.

Oblivious Transfer Phase:

Let σ ∈ {0, 1, . . . , ζ − 1} be the index of Receiver R.

1. Receiver R generates (ζ−1) random polynomials D1(x), . . . , Dζ−1(x) of
degree k such that (D1(0), . . . , Dζ−1(0)) is an (ζ−1)-tuple of only zeroes
except possibly for a 1 at position σ, the position corresponding to the
secret in which she is interested. Define a univariate polynomial V (x)
by V (x) = Q(x,D1(x), . . . , Dζ−1(x)). The degree of V (x) is (r − 1).

2. Then, R asks r servers Pij
for j = 1, . . . , r, by sending a query of the

form (D1(αij
), . . . , Dζ−1(αij

)).

3. Server Pij
calculates the value Q(αij

, D1(αij
), . . . , Dζ−1(αij

)) = V (αij
)

and sends it back to Receiver R.

4. After receiving r values of V (x), say V (αi1), . . . , V (αir
), R interpolates

V (x) and computes V (0).

Fig. 2. (r, n) −DOT −
(
ζ
1

)
[18]
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corrupt). The well known drawback of using a general access structure approach

rather than the threshold one is that the memory storage and the complexity of

each interaction could not be optimal. In this section we will apply a general

access structure method for building a DOT −
(
ζ
1

)
.

4.1. The Model. A General Access Structure DOT −
(
ζ
1

)
protocol

involves the same three types of parties as in the threshold case: Sender, Receiver

and servers.

The protocol is now composed in nearly the same way with a few changes

in the Oblivious Transfer Phase: The Receiver R holds a program ProgR which

enables her to interact with a subset of qualified servers in Γ at her choice. At the

same time, any subset in ∆k of servers corrupted by the Sender, does not gain

any information about the secret she has recovered. Also the coalition between

R and a subset in ∆` of servers corrupted by the Receiver cannot learn about

the secrets more than can be learned by the Receiver herself.

A formal definition follows:

Definition 4.1 [18]. A General Access Structure DOT −
(
n
1

)
must

guarantee the following properties:

• Reconstruction. If the Receiver gets information from a set of qualified

servers G ∈ Γ, she can compute the secret sσ.

• Sender’s Privacy. Given the information presented by a qualified group of

servers G ∈ Γ, the Receiver gains information about a single secret, but no

information about the other secrets.

• Receiver’s Privacy. No coalition of servers corrupted by the Sender B ∈ ∆k

gains information about which secret the Receiver has recovered.

• Receiver-servers collusion. A coalition of the Receiver with a set A ∈ ∆` of

servers corrupted by her cannot learn information about the ζ secrets more

than can be learned by the Receiver herself.

The set of n servers is divided in three sets of subsets: Γ—the set of

qualified serves, ∆k—the set of servers corrupted by the Sender and ∆`—the set

of severs corrupted by the Receiver. The set Γ is monotone increasing and the

sets ∆k and ∆` are monotone decreasing.

4.2. Conditions for Existence. Now, using some Information Theory

tools we can prove (in the same way as in the threshold case (see Theorem 3.4)) a
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necessary condition for the existence of the one-round General Access Structure

DOT protocol.

Theorem 4.2 [18]. Let consider a General Access Structure DOT −
(
ζ
1

)

scheme with set of qualified servers Γ, set ∆k of servers corrupted by the Sender

and set ∆` of servers corrupted by the Receiver. If Γ ∩ (∆k ]∆`) 6= ∅, then once

the Receiver has legally recovered a secret, a coalition of corrupt servers from ∆`

and the Receiver can recover all the other secrets.

A consequence of this existence condition for the one-round protocols is

the following Corollary.

Corollary 4.3 [18]. A necessary condition for the existence of a General

Access Structure DOT −
(
ζ
1

)
scheme with sets Γ,∆k,∆` of qualified servers,

servers corrupted by the Sender and servers corrupted by the Receiver is the tuple

(Γ,∆k ] ∆`) to be an access structure.

4.3. A Protocol. Denote by Γk = ∆c
k and Γ` = ∆c

`. We are now ready

to describe the protocol for General Access Structure DOT −
(
ζ
1

)
scheme with

set Γ of qualified servers, set ∆k of servers corrupted by the Sender and set ∆` of

servers corrupted by the Receiver, and the corresponding three access structures

Γ,Γk,Γ`.

Let Γk,Γ` be the access structures computed by MSPs Mk and M`, and

let M be (strongly) multiplicative product MSP of Mk and M` (see Definition

2.7). Hence M = Mk � M` and assume that MSP M computes Γ. Thus, a

necessary condition for the existence of General Access Structure DOT −
(
ζ
1

)

scheme, which turns out to be also a sufficient condition, is the following.

Theorem 4.4 [18]. Let consider a General Access Structure DOT −
(
ζ
1

)

scheme with set Γ of qualified servers, set ∆k of servers corrupted by the Sender,

and set ∆` of servers corrupted by the Receiver, and the corresponding three access

structures Γ,Γk,Γ`. A necessary and sufficient condition for the existence of the

scheme is the MSP M to be a (strongly) multiplicative product MSP of Mk and

M`.

P r o o f. The necessary condition follows directly from Corollary 4.3. A

protocol implementing DOT −
(
ζ
1

)
scheme will be presented in Fig. 3 together

with Lemma 4.6 they prove the sufficient conditions. �

Remark 4.5. It is easy to observe now that DOT can be considered as a

MPC protocol. The similarity is not only in the usage of (strongly) multiplicative
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General Access Structure DOT −
(
ζ
1

)
[18]

Initialization Phase:

Let s0, s1, . . . , sζ−1 ∈ F be the secrets of the Sender D.

1. Sender D generates ζ random vectors b0 ∈ Fd and b1, . . . ,bζ−1 ∈ Fd2 ,
such that 〈b0, ε〉 = s0 and, for i = 1, . . . , ζ − 1; si − s0 = 〈bi, ε2〉.

2. Then, for i = 1, . . . , n, he sends the ζ packets of shares (vectors) vj,i ∈
F|ϕ2(Pi)|, for j = 1, . . . , ζ − 1 and v0,i ∈ F|ϕ(Pi)| to server Pi. Here

v0,i = Mib
0 and vj,i = M

(2)
i bj for j = 1, . . . , ζ − 1.

Oblivious Transfer Phase:

Let σ ∈ {0, 1, . . . , ζ − 1} be the index of Receiver R.

1. Receiver R generates ζ−1 random vectors c1, . . . , cζ−1 ∈ Fd1 such that
(〈c1, ε1〉, . . . , 〈cζ−1, ε1〉) is an (ζ − 1)-tuple of zeroes with at most a 1
in position σ, the position corresponding to the secret in which she is
interested.

2. Then Receiver R asks a set of qualified servers Pi, by sending a query
of (ζ − 1) packets of temporary shares (vectors) uj,i ∈ F|ϕ1(Pi)|, for

j = 1, . . . , ζ − 1, where uj,i = M
(1)
i cj.

3. Server Pi calculates the values (vector)

wi = v0,i +

ζ−1∑

j=1

uj,i � vj,i

and sends it back to R.

4. After having received the values wi for a set of qualified servers (i. e.
Pi ∈ G and G ∈ Γ) the Receiver is able to recover the secret sσ . First
she computes the recombination vector λ, such that MT

G λ = ε and then
she computes sσ = 〈wG ,λ〉.

Fig. 3. General Access Structure DOT −
(
ζ
1

)
[18]
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product MSPs, but also that Corollary 4.3 corresponds to Proposition 2.8, since

they both give necessary conditions for existence of DOT and MPC protocols.

In the same way the existence of (strongly) multiplicative product MSP is a

sufficient condition for both DOT and MPC. We will elaborate further on the

connection between DOT and MPC.

So, there are three access structures Γ,Γk,Γ` and corresponding to them

three MSPs Mk = (F,M (1), ε1, ψ1), M` = (F,M (2), ε2, ψ2) and M = (F,M, ε, ψ)

as well as the “reverse” functions ϕ1, ϕ2 and ϕ. Let M (1) be an m1 × d1 matrix,

M (2) be an m2 × d2 matrix and M be an m × d matrix. Now we are ready to

present the following protocol for a General Access Structure DOT −
(
ζ
1

)
scheme,

assuming that MSP M is a (strongly) multiplicative product MSP of Mk and

M`.

Lemma 4.6 [18]. The protocol described in Fig. 3 implements general

access structure DOT −
(
ζ
1

)
scheme with set Γ of qualified servers, set ∆k of

servers corrupted by the Sender and set ∆` of servers corrupted by the Receiver.

P r o o f. The Correctness of the proposed protocol can be proved as

follows. We have 〈b0, ε〉 = s0 and, sj − s0 = 〈bj, ε2〉 for j = 1, . . . , ζ − 1. Denote

by (d1, . . . , dζ−1) = (〈c1, ε1〉, . . . , 〈cζ−1, ε1〉). So, uj,i ∈ F|ϕ1(Pi)| is the share of

Pi corresponding to dj and vj,i ∈ F|ϕ2(Pi)| is the share of Pi corresponding to

sj − s0. Thus uj,i � vj,i ∈ F|ϕ(Pi)| is the share of Pi corresponding to the share

of a (strongly) multiplicative resulting MSP M computing Γ, i. e. the share

for the secret dj(sj − s0). Hence share wi corresponds to the share of the same

(strongly) multiplicative MSP M with a shared secret s0 +
∑ζ−1

j=1 dj(sj − s0).

Since (d1, . . . , dζ−1) = (0, . . . , 0, 1, 0, . . . , 0) is a (ζ − 1)-tuple of zeroes with at

most a 1 in the position σ (the position corresponding to the secret in which

R is interested), we have sσ = s0 +
∑ζ−1

j=1 dj(sj − s0). Having received all this

information the Receiver recovers (using 〈wG ,λ〉) the secret, which is exactly sσ.

Now we will see that the proposed General Access Structure protocol for

DOT −
(
ζ
1

)
satisfies the four properties from Definition 4.1.

The Reconstruction follows from the Correctness. The Receiver’s Privacy

is guaranteed against coalitions ∆k of forbidden servers, because R herself chooses

vectors c1, . . . , cζ−1 with values d1, . . . , dζ−1 and from the standard arguments for

privacy in LSSS. Again using the proof for correctness of the proposed protocol it

follows that the Sender’s Privacy is guaranteed. And finally the Receiver-servers

collusion is guaranteed assuming that the Receiver has already calculated one

secret and that a coalition of ∆` corrupt servers helps her to discover the others.
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Because the Sender D chooses the vectors b0,b1, . . . ,bζ−1 the information these

∆` corrupt servers posses (i. e. their collected shares) is insufficient to recover

any of the secrets s0, s1 − s0, . . . , sζ−1 − s0. �

Remark 4.7. Observe that a DOT −
(
ζ
1

)
scheme can be considered as

a MPC protocol computing the function

f(s,η) = s0.(1 −

ζ−1∑

i=1

ηi) +

ζ−1∑

i=1

siηi.

The inputs are the secrets of the Sender s0, s1, . . . , sζ−1 and a tuple (η1, . . . , ηζ−1),

of only zeroes except possibly for a 1, of the Receiver.

Comparing to the general MPC protocols a DOT can be implemented

efficiently because of the linearity of the computed function, which allow to reduce

the interaction between the servers. Indeed when Receiver R sends a query to a

server they perform together a MPC computing a share of f(s,η). Therefore the

interaction with a qualified group of servers allow the Receiver to compute the

function and to receive the secret which she is interested.

Another important difference is that all participants in a DOT protocol

are assumed to be possibly curious but never corrupt. Thus DOT settings

correspond to passive multi-party protocol settings, hence Theorem 2.10 cor-

responds to Theorem 4.4.
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5. Appendix. Here we provide some Information Theoretic definitions

and results. Let X and Y be (possibly dependent) random variables with proba-

bility measures PX and PY respectively. We define P log2 P evaluated in P = 0

to be equal to 0. The entropy H(X) is defined by

H(X) = −
∑

x

PX(x) log2 PX(x).

Equivalently H(X) = −E(log2 PX(x)), where E denotes the expectation. H(X)

is also called the uncertainty about X. Its interpretation is as follows. H(X)

measures the average amount of bits needed to describe a realization of random

variable X, or in other words H(X) measures the amount of information contai-

ned in X. So, H(X) = 0 if and only if one is certain about X. The conditional

entropy H(X|Y = y) is defined by

H(X|Y = y) = −
∑

x

PX|Y (x|y) log2 PX|Y (x|y).
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Obviously H(X|Y = y) = −E(log2 PX|Y (X|y)). The conditional entropy

H(X|Y ) is now defined by

H(X|Y ) = −
∑

y

PY (y)H(X|Y = y).

Hence H(X|Y ) = −E(log2 PX|Y (X|Y )) and it measures the average amount of

bits needed to describe X given the knowledge of Y . Equations and inequalities

with natural interpretations can be derived now. For example

H(XY ) = H(X) +H(Y |X),(11)

i. e., the information needed to describe both X and Y equals the information

needed to describe X together with the information needed to describe Y given

the knowledge (information) of X. Another example is the following inequality:

0 ≤ H(X|Y ) ≤ H(X) ≤ log2 |{x : PX(x) > 0}|.

The difference between H(X) and H(X|Y ) gives another useful notion. The

mutual information between X and Y is defined as

I(X;Y ) = H(X) −H(X|Y ).

The mutual information between X and Y measures the amount of information

X and Y have in common (it is easy using the equation (11) to see that I(X;Y ) =

I(Y ;X)). Given n+ 1 random variables X1, . . . , Xn, Y , the entropy of X1 . . . Xn

given Y can be written as

H(X1 . . . Xn|Y ) = H(X1|Y ) +H(X2|X1Y ) + · · · +H(Xn|X1 . . . Xn−1Y ).

Therefore, for any sequence of n random variables X1, . . . , Xn it holds that

H(X1 . . . Xn) =
n∑

i=1

H(Xi|X1 . . . Xi−1) ≤
n∑

i=1

H(Xi).

Moreover, the above relation implies that, for any j ≤ n,

H(X1 . . . Xn) ≥ H(X1 . . . Xj).

Let Z be another random variable. The conditional mutual information between

X and Y given Z is defined as

I(X;Y |Z) = H(X|Z) −H(X|Y Z) = H(Y |Z) −H(Y |ZX) = I(Y ;X|Z).
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Since the conditional mutual information I(X;Y |Z) is non-negative we get

H(X|Z) ≥ H(X|Y Z).
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