
Serdica J. Computing 1 (2007), 255–266

GENERALIZED NETS MODEL OF AN E-LEARNING

SYSTEM SOFTWARE ARCHITECTURE*

Aleksandar Dimov, Sylvia Ilieva

Abstract. Component-based software engineering and software architec-
ture are tightly connected areas in computer science. Software architecture
presents the functionality of the system as decomposition into components,
the properties of these components and the connectors between them. This
paper illustrates a methodology for application of the theory of Generalized
Nets (GNs) as a language for description of software systems architecture.
According to this methodology, every component in the system, as well as
every connector is represented by a single GN transition. This way the
positions of the transition describe the ports of components and connectors
in the system. This paper introduces a model of the component-based
architecture of the e-learning system ARCADE, which is created, with respect
to the proposed methodology for description with GNs. The four main
subsystems are regarded as components in the GNs model. Their additional
sub-modules are presented as the services provided by the components.
Method calls are regarded as the connectors between these components.
Further, the GNs model is compared with the existing UML diagrams,
specifying the design of ARCADE.

ACM Computing Classification System (1998): D.2.11.
Key words: Component-based software engineering; Software architecture; Generalized Nets;

e-Learning systems.

*The paper has been presented at the International Conference Pioneers of Bulgarian
Mathematics, Dedicated to Nikola Obreshkoff and Lubomir Tschakaloff , Sofia, July, 2006.



256 Aleksandar Dimov, Sylvia Ilieva

1. Introduction. Component-Based Software Engineering (CBSE)
emerged because of the increased interest in reuse of preexisting software functio-
nality. The introduction of the notion of component [6, 11] is the key innovation
in this discipline. Component is an independently developed piece of software
and can be integrated with other components in order to build larger units. The
interaction point of components with the rest of the system is called interface.
It should be clearly specified, because it defines the services that components
provide and require for their execution. During integration components may be
adapted by writing wrappers, but their source code may not be modified.

Although promising, the approach of building software systems with com-
ponents is a tedious task, as reuse of preexisting software code hides some prob-
lems [7]. Study of software architecture is a key concept for simplification of
the design, implementation and maintenance of complex software systems. Thus,
component-based software engineering and software architecture are tightly con-
nected areas in computer science. To address problems with integration of
components clear distinction should be established between the communicational
and computational artifacts within programs [9, 10]. Computational aspects of
systems are introduced by components, while their interconnections are maintai-
ned by connectors.

In order to achieve maximum benefit when reason about software architec-
ture, one should be able to specify it in a formal way. The so-called Architecture
Description Languages (ADLs) are aimed at description of software architecture
with uniform means at different levels of abstraction [4, 8].

This paper shows an experimental model of the software architecture of
ARCADE system [1, 3] that applies the notation of Generalized Nets [2] as an
ADL. The model is based on the publications about the architecture of ARCADE.

The paper is organized as follows: Section 2 makes a brief introduction to
GNs and gives an overview of the principles for creation of software architecture
models with them. Section 3 describes the model of the architecture of ARCADE
system and finally, Section 4 concludes the paper.

2. Methodology for description of software architecture with

GNs. This section gives general information about modeling of software archi-
tecture with GN. They follow the basic methodology for construction of GN,
described in [2] and reflect the requirement towards ADLs for description of
components, connectors and their configurations, as outlined in [8]. GNs have
many applications, but currently, they are not used as a notation for description
of software architecture. In this paper the methodology for usage of GNs for
software architecture description is applied, as originally described in [5].



Generalized Nets Model of an e-Learning System. . . 257

GNs is notation, aimed at description of parallel processes. Their main
building unit is the so-called transition, which should have one or more input and
output positions (places). Tokens are used to present the information, processed
by the GN. They may move from transition’s input to output positions, if a
corresponding condition predicate is true.

The first problem that system architects should solve in order to build
the GN model is to identify the constituent components, connectors and their
attachments of the system. Further, a single GN transition is assigned for every
component and connector. This way input interfaces should correspond to input
positions of a transition and respectively, output interfaces – to output positions.

Essential aspects for description of components and connectors* are their
semantics and syntax. Syntax is usually defined by their input and output ports.
Hence the corresponding transition places belonging to the sets L′ and L′′ (which
describe the ports) take part in the modeling of the syntax of components and
connectors. Other part of GNs that may be used to model syntax of architectural
elements are the extended transition’s type � and capacities of positions and
throughput capacities of the arrows between positions, given in the matrix M .

Modeling of semantics of architectural elements has two facets – gray or
black box representation. When modeling the element as a gray box some internal
states of the execution should be included in the model. They are described with
auxiliary (hexagonal) positions and their number corresponds to the number of
internal states that should be modeled. These additional positions should be
connected in loops in order to represent internal states. Other auxiliary positions
may be used to model terminal states of the execution of the element. The actual
processing is described mainly with the transition conditions r, characteristic
functions Φ and the priorities of the positions πL. Transition conditions represent
the control flow inside the component. Processing of user data is modeled by
the characteristic functions of GN and priorities of the positions determine the
sequence of the processing activities of the components.

When a component or connector is modeled as a black box, the cor-
responding transition will include auxiliary positions only for terminal states.
This means that it will not have connected in loops positions. In this case,
the services of the component are globally modeled as atomic operations, which
are independent from each other. Thus, priorities of the positions will be less
significant and may be neglected.

In the next section we continue with concrete model of ARCADE system.

*Both components and connectors are also denoted as architectural elements throughout this
paper.



258 Aleksandar Dimov, Sylvia Ilieva

3. Software architecture model of ARCADE.

3.1. Brief overview of ARCADE system. ARCADE (Architecture

for Reusable Courseware Authoring and Delivery) is an e-learning platform, de-
veloped in the department of Information technologies at FMI, University of
Sofia, by a team of engineers, specialists and students. It has been developed,
using the newest trends for organization, authoring and delivery of distance
courses. Nowadays, the system is used for management of the department’s
master courses. The system was designed following a component-based approach
and its main subsystems are:

• Course and Curriculum Management Module (CCMM ) – this subsystem
realizes different functions that provide services supporting the work of
instructors and course administrators.

• Users and System Management Module – (USMM ) – this subsystem im-
plements most of the functions that concern system administrators.

• Communications module (CM ) – it has five services, which offer different
communication options between ARCADE users.

• Assessments and Assignments Module (AAM ) – this subsystem implements
the functionality of services for student assessments.

All of the described above subsystems communicate through a database,
which stores information for the users and users’ groups. General architectural
scheme, showing the relationships between the defined subsystems (without the
database) is shown on Fig. 1.

3.2. GN model of ARCADE. A GN-model created in this paper
is shown on Fig. 2 and assumes that all subsystems shown on Fig. 1 are
components. According to the ARCADE implementation, components are con-
nected with each other by methods calls, and a database, i.e. the architecture
combines object-oriented style with repository style.

Place names in Fig. 2 are omitted for simplicity. They are formed as
follows: l

′,j
i for input places, l

′′,j
i for output places and mj for auxiliary places,

where i denotes place number (counted from top) and j denotes transition number.
Further is assumed that subcomponents within the four basic system components
represent services that are modeled by the corresponding input and output places
of transitions.

For all transitions, that describe the model components from Fig. 2, are
valid the following meanings of the places:



Generalized Nets Model of an e-Learning System. . . 259

Fig. 1. Architecture of ARCADE system (modeled by UML)

Fig. 2. GN model of the software architecture of ARCADE



260 Aleksandar Dimov, Sylvia Ilieva

l
′,j
mj

– get the result from the query to the database;

l
′′,j
nj−1

– request for reading from database;

l
′′,j
nj – request for writing into the database;

mj – auxiliary places, needed to drive obsolete tokens out of the model,
where j is transition number, mj is the count of input places in transition j, and
nj is the count of output places for j, j ∈{1,2,3,4}.

The following general symbols are used in the model for some of the
transitions condition predicates:
WR = “µ(α, l

′,j
i ) = ‘read from database’ ”,

WW = “µ(α, l
′,j
i ) = ‘write to database’ ”,

W1 = “It is necessary to call the service for curriculum management (in CCMM )”,
W2 = “It is necessary to call the service for users management (in USMM )”,
UR = ¬(W11 ∨ W12 ∨ WR ∨ WW4).

3.3. Models of the ARCADE components.

3.3.1 Assessments and assignments module. The places of the transition,
that models the assessments and assignments module (K 1), have the following
meanings:

l
′,1
1

and l
′′,1
1

– input and output interface of the service for assignments;

l
′,1
2

and l
′′,1
2

– input and output interface of the service for assessments;

l
′,1
3

– system users input.

The index matrix with transition K1 predicates is:

(1) r1 =

l
′′,1
1

l
′′,1
2

m1 l
′′,1
3

l
′′,1
4

l
′,1
1

W1 ∨ W2 0 UR WR WW

l
′,1
2

0 W1 ∨ W2 UR WR WW

l
′,1
3

W 1
1 W 1

2 UR1 0 0

l
′,1
4

W 1
1 W 1

2 UR1 0 0

where:

W 1
1 = “It is necessary to call the assignments service”,

W 1
2 = “It is necessary to call the assessments service”,

UR1 = ¬(W 1
1 ∨ W 1

2 ).

The type of transition K1, that determines the condition for its activation,
is: �

1 = ∨(l′,1
1

, l
′,1
2

, l
′,1
3

).

3.3.2 Communications Module. The places of the transition that models
the communications module (K2) have the following meanings:



Generalized Nets Model of an e-Learning System. . . 261

l
′,2
1

, l
′′,2
1

– input and output interface of the e-mail service;

l
′,2
2

, l
′′,2
2

– input and output interface of the virtual chat rooms service;

l
′,2
3

, l
′′,2
3

– input and output interface of the news service;

l
′,2
4

, l
′′,2
4

– input and output interface of the virtual disk;

l
′,2
5

, l
′′,2
5

– input and output interface of the discussion board;

l
′,2
6

– system users input.

The index matrix with transition K2 predicates is:

(2) r2=

l
′′,2
1

l
′′,2
2

l
′′,2
3

l
′′,2
4

l
′′,2
5

m2 l
′′,2
6

l
′′,2
7

l
′,2
1

W1 ∨ W2 0 0 0 0 UR WR WW

l
′,2
2

0 W1 ∨ W2 0 0 0 UR WR WW

l
′,2
3

0 0 W1 ∨ W2 0 0 UR WR WW

l
′,2
4

0 0 W1 ∨ W2 0 UR WR WW

l
′,2
5

0 0 0 0 W1 ∨ W2 UR WR WW

l
′,2
6

W 2
1 W 2

2 W 2
3 W 2

4 W 2
5 UR2 0 0

l
′,2
7

W 2
1 W 2

2 W 2
3 W 2

4 W 2
5 UR2 0 0

where:

W 2
1 = “It is necessary to the e-mail service”;

W 2
2 = “It is necessary to call the virtual chat rooms service”;

W 2
3 = “It is necessary to call the news service”;

W 2
4 = “It is necessary to call the virtual disk service ”;

W 2
5 = “It is necessary to call the discussion board service”;

UR2 = ¬(W 2
1 ∨ W 2

2 ∨ W 2
3 ∨ W 2

4 ∨ W 2
5 ).

The type of transition K2 is: �
2 = ∨(l′,2

1
, l

′,2
2

, l
′,2
3

, l
′,2
4

, l
′,2
5

, l
′,2
6

).

3.3.3. Course and curriculum management module. The places of the
transition that models the course and curriculum management module (K 3) have
the following meanings:

l
′,3
1

, l
′′,3
1

– input and output interface of the courses management service;

l
′,3
2

, l
′′,3
2

– input and output interface of the curriculum management
service;

l
′,3
3

– system users input.



262 Aleksandar Dimov, Sylvia Ilieva

The index matrix with the predicates for transition K 3 is as follows:

(3) r3 =

l
′′,3
1

l
′′,3
2

m3 l
′′,3
3

l
′′,3
4

l
′,3
1

W 2 0 UR3
1 WR WW

l
′,3
2

W 3 W1 ∨ W2 UR3
2 WR WW

l
′,3
3

W 3 W2 UR3
3 0 0

l
′,3
4

W 3 W2 UR3
3 0 0

where:
W 3 = “It is necessary to call the courses management service”;
UR3

1 = ¬(W2 ∨ WR ∨ WW );
UR3

2 = ¬(W1 ∨ W2 ∨ W 3 ∨ WR ∨ WW );
UR3

3 = ¬(W 3 ∨ W2).
The type of transition K3 is: �

3 = ∨(l′,3
1

, l
′,3
2

, l
′,3
3

).

3.3.4. User and system management module. The places of transition
(K4) that models the user and system management module, have the following
meanings:

l
′,4
1

, l
′′,4
1

– input and output interfaces of the user management service;

l
′,4
2

– system users input.
The index matrix with the predicates for transition K 4 is:

(4) r4 =

l
′′,4
1

m4 l
′′,4
2

l
′′,4
3

l
′,4
1

W2 UR3
1 WR WW

l
′,4
2

W2 ¬W2 0 0

l
′,4
3

W2 ¬W2 0 0

The transition type is: �
4 = ∨(l′,4

1
, l

′,4
2

).
Characteristic functions, that set the tokens characteristics, are similar

to previous cases. Tokens get as new characteristic first – the returned result by
the service, and second – a request to an external component service if necessary.
Tokens do not change their characteristics upon entrance in any of the places
l
′′,j
nj−1

, l
′′,j
nj

and mj, where j ∈ {1, 2, 3, 4}.

3.4. Connector models in ARCADE. In the presented GN model,
the connector transitions (excluding the database) are used only to move tokens
towards:

• The input interfaces of the called service;



Generalized Nets Model of an e-Learning System. . . 263

• The corresponding input interfaces of caller components, whet the tokens
contain the result returned by the called component.

The tokens characteristics do not change while they are passing through
the CM transitions. The arcs’ capacities are infinite, because the performance of
the systems, built according to the object oriented style is limited only by the
components. This way, only the predicates of transitions C j, j ∈{5,. . . ,11} are
important for the system model. For j ∈{5,. . . ,9}, they are as follows:

(5) rj =
l
′,3
2

l
′,4
1

la W1 W2

where: la ≡ l
′′,1
1

for j = 5, la ≡ l
′′,1
2

for j = 6, la ≡ l
′′,2
1

for j = 7, la ≡ l
′′,2
2

for

j = 8, la ≡ l
′′,2
3

for j = 9.
The index matrix with transition C10 predicates is:

(6) r10 =
l
′,1
1

l
′,1
2

l
′,2
1

l
′,2
2

l
′,2
3

m10 l
′,4
1

l
′′,3
1

W 10
1 W 10

2 W 10
3 W 10

4 W 10
5 UR10 W2

where:
W 10

1 = “µ(α, l
′′,3
1

) = ‘returned result to the assignments service’ ”;

W 10
2 = “µ(α, l

′′,3
1

) = ‘returned result to the assessments service’ ”;

W 10
3 = “µ(α, l

′′,3
1

) = ‘returned result to the e-mail service’ ”;

W 10
4 = “µ(α, l

′′,3
1

) = ‘returned result to the virtual chat rooms service’ ”;

W 10
5 = “µ(α, l

′′,3
1

) = ‘returned result to the news service’ ”;
UR10 = ¬(W 10

1 ∨ W 10
2 ∨ W 10

3 ∨ W 10
4 ∨ W 10

5 ∨ W2).
The index matrix with transition C11 predicates is:

(7) r11 =
l
′,3
2

l
′,3
3

l
′,1
1

l
′,1
2

l
′,2
1

l
′,2
2

l
′,2
3

l
′,2
4

l
′,2
5

m11

l
′′,4
1

W 11
1 W 11

2 W 11
3 W 11

4 W 11
5 W 11

6 W 11
7 W 11

8 W 11
9 UR11

where:
W 11

1 = “µ(α, l
′′,4
1

) = “returned result to the course management service”;

W 11
2 = “µ(α, l

′′,4
1

) = ‘returned result to the curriculum management service’ ”;

W 11
3 = “µ(α, l

′′,4
1

) = ‘returned result to the assignments service’ ”;

W 11
4 = “µ(α, l

′′,4
1

) = ‘returned result to the assessments service’ ”;

W 11
5 = “µ(α, l

′′,4
1

) = ‘returned result to the e-mail service’ ”;

W 11
6 = “µ(α, l

′′,4
1

) = ‘returned result to the virtual chat rooms service’ ”;

W 11
7 = “µ(α, l

′′,4
1

) = ‘returned result to the news service’ ”;



264 Aleksandar Dimov, Sylvia Ilieva

W 11
8 = “µ(α, l

′′,4
1

) = ‘returned result to the virtual disks service’ ”;

W 11
9 = “µ(α, l

′′,4
1

) = ‘returned result to the discussion boards service’ ”;

W 6 = ¬(W 11
1 ∨ W 11

2 ∨ W 11
3 ∨ W 11

4 ∨ W 11
5 ∨ W 11

6 ∨ W 11
7 ∨ W 11

8 ∨ W 11
9 ).

The types of the described transitions, that determine the conditions for
their activation, are: �

j = ∨(li), where j ∈{5,. . . ,11}, i ∈ {1, . . . ‖Lj
1
‖}. L

j
1

is the
set of the input places of transition C j.

The model of the data base (C12) is different from the described above
connector models. The transition condition here is:

(8) r12 =

l
′,3
4

l
′,1
4

l
′,2
7

l
′,4
4

m7

l
′′,3
3

1 0 0 0 0

l
′′,3
4

0 0 0 0 1

l
′′,4
3

0 0 0 1 0

l
′′,4
4

0 0 0 0 1

l
′′,2
6

0 0 1 0 0

l
′′,2
7

0 0 0 0 1

l
′′,1
3

1 0 0 0 0

l
′′,1
4

0 0 0 0 1

,

The transition type of r12 is �
12 = ∨(l′′,3

3
, l

′′,3
4

, l
′′,4
3

, l
′′,4
4

, l
′′,2
6

, l
′′,2
7

, l
′′,1
3

,

l
′′,1
4

). In this model are affected neither the details of simultaneous processing of
read and write requests, nor the storage of information on physical level. The
characteristic functions of this transition are:

Φ
l
′,i
4

: “Token α in place l
′,i
4

obtains as a new characteristic the data for the

component i”, for i ∈ {1, 3, 4};

Φ
l
′,2
7

: “Token α in place l
′,2
7

obtains as a characteristic the data for the commu-

nications module”.

4. Conclusion. This paper shows an example for application of the
notation of GNs as an ADL. Model of software architecture of the ARCADE
system is built, based on existing UML models of it, known from literature
sources. The comparison of two approaches shows that a problem for the appli-
cation of GNs as ADL with respect to UML is the large amount of over-crossing
arcs in some cases. For example this is the situation with the object-oriented
architectural style, used for design of the ARCADE architecture. Another difficult



Generalized Nets Model of an e-Learning System. . . 265

to describe with GNs architectural style is the client-server style. It is valid
for these two styles, because the tokens (i.e. the information) have to pass in
reverse direction (from right to left) to represent a returned result. These arcs
are introduced with dashed lines on Fig. 1.

However, it is natural for UML to give opportunities for simpler presenta-
tion of object oriented architectural style in comparison with GNs as it is created
especially for the needs of the object-oriented programming.

Main advantage of GNs, in comparison with UML and other ADLs in
general is the possibility to follow the flow and processing of information inside
the system in straightforward way. Moreover, the formal model makes it easier
to reason about the system at different levels of abstraction.

Analysis of the described here model may infer some recommendations
about improvement of ARCADE architecture. For example, unclearly differentia-
ted connectors, deters the reuse of both components and their models. Thus, the
architecture of the system could be reconsidered in order to differentiate connector
and/or wrapping modules. This presumes the inclusion of other architecture
styles besides the used object-oriented and repository.

The main direction for further research is the design and development of
toolset supporting the construction of software architecture models, analysis of
these models and the implementation and integration of actual systems based on
the models.

Acknowledgements. The work reported in this paper is partially
supported by the project BIS-21++ funded by the European Commission in FP6
INCO via contract no.: INCO-CT-2005-016639.

REFERE NCES

[1] Aleksieva A., M. Petrov, B Bontchev. ARCADE Assessment
Framework. In: Proceedings of 2nd Int. Conf. on Multimedia and ICTs in
Education (m-ICTE2003), Badajoz, Spain, December 3–6, 2003.

[2] Atanassov, K. Generalized Nets. World Scientific, 1991.

[3] Bontchev B., T. Iliev. ARCADE - a Web-based Authoring and Delivery
Platform for Distance Education. In: Proceedings of 1st Balkan Conference
on Informatics (BCI’2003), Thessaloniki, Greece, 21–23 of November, 2003.



266 Aleksandar Dimov, Sylvia Ilieva

[4] Dimov A., S. Ilieva. System level modelling of component-based software
systems. In: Proceedings of the 5th international conference on Computer
systems and technologies (CompSysTech 2004), Rousse, Bulgaria June 17–
18, 2004, II.7.1–II.7.6.

[5] Dimov A., S. Ilieva. Description of Software Architecture with Generalized
Nets. Journal of Information technologies and Control 3 (2005), 18–27.

[6] D’Souza D., A. Wills. Objects, Components and Frameworks: The
Catalysis Approach. Reading, MA: Addison-Wesley, 1998.

[7] Garlan D., R. Allan, J. Ockerbloom. Architectural Mismatch or why
it’s Hard to Build Systems out of Existing Parts. In: Proceedings of 17th
International Conference on Software Engineering, 1995, 179–185.

[8] Medvidovic N., R. Taylor. A classification and comparison framework
for Software Architecture Description Languages. IEEE Transactions on

Software Engineering 26, No. 1 (2000), 70–93.

[9] Perry D., A. Wolf. Foundations for the Study of Software Architectures.
ACM SIGSOFT Software Engineering Notes 17 (1992), 40–52.

[10] Shaw M. Procedure calls are the assembly language of system
interconnection: Connectors deserve first-class status. Proceedings of the
Workshop on Studies of Software Design, Lecture Notes in Computer
Science, Springer-Verlag, 1993.

[11] Szyperski C. Component Software: Beyond Object-Oriented
Programming. Reading, MA: Addison-Wesley, 1998.

Department of Information Technologies

Faculty of Mathematics and Informatics

University of Sofia

5, James Bourchier Blvd

1164 Sofia, Bulgaria

e-mail: aldi@fmi.uni-sofia.bg

sylvia@acad.bg

Received October 25, 2006

Final Accepted September 13, 2007


