
Serdica J. Computing 1 (2007), 229–240

A PROTOTYPE OF AN EXTENSION TO THE UDDI

REGISTRY ALLOWING PUBILCATION AND SEARCH

BASED ON SUBJECTIVE EVALUATIONS*

Alexander Mintchev

Abstract. The current paper introduces the usage of subjective evaluations
by others as a tool that can support consumers’ decisions. It summarizes
the features of the main UDDI registry providers and presents an extension
to any UDDI registry allowing users of the registry to publish subjective
evaluations for any artifact found in it and to search for artifacts, based on
subjective evaluations. The paper outlines some typical business scenarios,
in which the proposed extension would be useful, and introduces some areas
for feature work and improvement.

1. Introduction into the subject area. In their paper “The

Market for evaluations” Avery, Resnick and Zeckhauser [1] claim that “Subjective

evaluations by others are a valuable tool for consumers who are choosing which

products to buy or how to spend their time. Recent developments in computer

ACM Computing Classification System (1998): D.2.11
Key words: UDDI, web-services, evaluations.

*The paper has been presented at the International Conference Pioneers of Bulgarian
Mathematics, Dedicated to Nikola Obreshkoff and Lubomir Tschakaloff, Sofia, July, 2006.

230 Alexander Mintchev

networks have driven the cost of distributing information virtually to zero creating

extraordinary opportunities for sharing product evaluations”. One of their con-

clusions concerns electronic goods offered via computer networks, whose purchase

cost is zero (i.e. electronic bulletin board messages). The authors conclude that

“a market for evaluations could coordinate decisions about which people should

read and evaluate particular messages.... Human effort would only be required to

evaluate the messages; the market would be fully automated.”

In this paper, we introduce a high-level design of a software tool, which

allows users of UDDI registries to publish their subjective evaluations about

artifacts found in a UDDI registry and to discover UDDI artifacts, based on such

evaluations. We expect that the conclusions of Avery, Resnick, and Zeckhauser’

will also hold for the evaluations of UDDI artifacts (which are also “electronic

goods offered via computer networks, with purchase price [close to] zero”).

Having started in 2000 as collaboration between Microsoft, Ariba, and

IBM, the UDDI project aims at speeding up interoperability and adoption of

Web services by enabling enterprises to quickly and dynamically publish, discover

and invoke them. This is achieved through the creation of standards-based

specifications for service description and discovery. Meanwhile, business process

modeling languages have emerged as an important instrument for achieving in-

tegration of business applications both within and across organizations. Some of

them (i.e. BPEL) represent business processes as interactions of web-services.

While UDDI standard does provide a variety of mechanisms to classify

a web-service in terms of standard and custom classification criteria that are

objective, it does not provide a means for the users of a UDDI registry to

publish their own, subjective evaluations about the perceived “quality” of a web-

service found in the UDDI registry, and to search for a web-service based on such

subjective criteria. The same holds also for the providers of UDDI registers: of

all available implementations of UDDI registries that authors have investigated

(e.g. registries from Systinet, Microsoft, SAP, Apache, Oracle) no one provides

a possibility for a user of the UDDI registry to publish a subjective evaluation of

an artifact from this registry and later to search for artifacts on the basis of such

subjective evaluations.

A prototype of an extension to the UDDI registry . . . 231

2. Core features of UDDI registries by leading providers.

Table 1. Core features summary of the main UDDI registry providers, Source: see
references [2]–[7]

Provider TAXO CLASS EVAL CLASSIFY SDDTAXO SDDEVAL
Systinet YES NO YES NO
SAP YES NO YES NO
Microsoft YES NO YES NO
Oracle YES NO YES NO
Apache YES NO YES NO
BEA YES NO YES NO

Legend:

TAXO CLASS: Has classification mechanism based on custom and standard taxono-

mies

EVAL CLASSIFY: Has classification mechanism reflecting subjective evaluation by

users

SDDTAXO: Has service description and discovery based on TAXO CLASS

SDDEVAL: Has service description and discovery based on EVAL CLASSIFY

3. Features of the extension. Let us have a running UDDI registry.

(i.e. any UDDI registry from the ones presented above). We introduce a design

of an extension to it, such that:

1. It is independent of the implementation of the UDDI registry – communi-

cation between the extension and the UDDI registry goes through standard

UDDI APIs (SOAP messages);

2. It allows a user of the UDDI registry to publish a subjective evaluation

about the perceived “quality” of any artifact in the UDDI registry, including

a web-service;

3. It uses standard requests to the UDDI registry that allow searching for

UDDI artifacts in accordance to the UDDI specification, and, in addition,

based on the subjective evaluation criteria mentioned;

4. The existing UDDI application is able to run independently of the extension

and is completely unaware of its existence.

232 Alexander Mintchev

4. A typical use case for the extension. Let we have a business

process that is implemented as a process-based service composition (i.e. as an

interaction of web-services). This business process must dynamically decide

which web-service provider to pick for a particular activity. UDDI registry

can find appropriate web-services matching only pre-defined, objective criteria.

What if there are several competing web-services (providers), equally suitable

for becoming partners in the business process? We may need to obtain some

additional (subjective) evaluation about the “quality” of the web- service (pro-

viders) that the business process must choose from.

5. Design of the extension. The first question to be answered is

if it is possible to represent a user evaluation in terms of UDDI data strictures.

UDDI has a limited set of data structures: business entity, business service,

tModel, binding template and publisher assertion. A tModel, which represents a

reusable abstract concept (i.e. a software artifact, a communication protocol,

an address, or a taxonomy) may at first seem an appropriate solution: if a

user wants to publish an evaluation regarding, say, a business service, they just

publish a tModel, categorizing it as representing an evaluation, referring to the

business service being subject to evaluation, and finally giving it a reference to

the specific evaluation scheme used, as well as to the concrete value within this

specific evaluation system (which is actually the user’s own “mark”) . Although

possible, such a solution has 2 main drawbacks:

1. Such a tModel would not be reusable anymore (i.e. it could not be

further used in any identifier or categorization scheme), as it is a concrete mapping

between a unique business service and a unique users’ mark valid only for this

specific business service. This not only contradicts the semantics of a tModel,

but also does not prevent other users by mistakenly referring it.

2. Any search of UDDI artifact based on such an evaluation shall involve

a couple of independent requests, whose return type could not be automatically

sorted by the UDDI registry: A user would first issue a standard UDDI find

request, and then, for each item found in the result, perform additional search

for tModels representing concrete evaluations of this entity. Finally, of all tModels

(i.e all evaluations found in the second request), the user would have to manually

sort and interpret the evaluations’ semantics.

Therefore, UDDI does not offer appropriate data structure for storing

user’s evaluations. That is why the need arises that evaluations be stored in

A prototype of an extension to the UDDI registry . . . 233

their own data structures, outside the UDDI application. They will be stored,

managed and retrieved by the extension to the UDDI application that would be

an independent application.

The Evaluation Data Structure stored within the extension

ID A unique ID of an evaluation

UserID A userID of an user of an UDDI registry, as defined in
the UDDI request get authInfo

UDDI entity key A key of an UDDI entity being evaluated, one of the
business entity key, business service key, tModel key, or
bindingTemplate key

Evaluation system key A tModel key of the evaluation system used. In essence:
a tModel key of a custom categorization scheme

Evaluation value The user’s own evaluation or “mark”. It must be a valid
value within the Evaluation system

Users’ evaluations will be based on custom, pre-defined evaluation systems

(taxonomies). As shown previously, any leading UDDI registry provider allows for

classification based on custom taxonomy. This allows custom evaluation systems

to be stored in the UDDI registry as custom taxonomies. Storing the evaluation

scheme within the UDDI registry has the following benefits:

1. Any user of the UDDI registry can classify their own entities with the

evaluation scheme given. (This is equivalent to a user giving an evaluation

about their own entities.)

2. If the UDDI registry does support external value checking (as SAP UDDI

registry), the evaluation scheme would be stored only in the UDDI registry,

and not in the extension, which will prevent dual maintenance.

If the UDDI registry does not support external value set checking, we will

need to store the evaluation scheme in the extension as well.

The extension will be an individual web-application that will be exposed

as a web-service. (It will communicate thorough SOAP requests via HTTP/

HTTPS). It will have its own persistence (i.e. own with its own Data Base).

6. Communication between a client, the extension and the

UDDI registry. Being a separate application, exposed as a web-service, the

extension receives all SOAP requests sent by any client application to the UDDI

234 Alexander Mintchev

registry. With the exception of UDDI find API requests, and the get authInfo

request, all UDDI requests are directly dispatched to the UDDI application

without any processing; the UDDI responses to these requests are, in turn, also

dispatched to the client application without any processing. There is one custom

API call to the extension add evaluation, which allows users of UDDI registries

to publish evaluations about UDDI artifacts. The add evaluation request for

the UDDI entity businessservice has the following structure

SAMPLE REQUEST

<add_evaluation>

<auth_info>XXXX</auth_info>

<business_service key="uddi:goodle.de:GoogleSevice1">

<evaluations>

<evaluation tModelKey="uddi:evaluation:quality" value="6"

name="Excellent Quality"/>

<evaluation tModelKey="uddi:evaluation:speed" value="5"

name="Very Good Quality"/>

</evaluations>

</business_service>

</add_evaluation

SAMPLE DTD

<!--DTD -->

<!ELEMENT add_evaluation (auth_info, business_service)>

<!ELEMENT auth_info (#PCDATA)>

<!ELEMENT business_service (evaluations)>

<!ATTLIST business_service

key CDATA #REQUIRED

>

<!ELEMENT evaluation EMPTY>

<!ATTLIST evaluation

tModelKey CDATA #REQUIRED

value CDATA #REQUIRED

name CDATA #REQUIRED

>

<!ELEMENT evaluations (evaluation+)>

A prototype of an extension to the UDDI registry . . . 235

6.1. Publishing evaluations about a UDDI artifact. Here, we

assume that the UDDI registry supports external value set validation via the

UDDI API call get allValidValues. If this is not the case, then the message with

number 2.2 is simply not exchanged, but instead the extension cheeks internally

the values of the evaluation system referred (in this case, the evaluation system

is stored in the extension)

1. Client sends UDDI get auth Token request, providing their userID and

credentials.

1.1. The extension redirects this request to the UDDI server, and, receives

authToken if userID and credentials were correct

1.2. The extension maps the authToken received with the userID and re-

turns back to the client the auth Token. This is required in order

for the extension to be able to identify the userID when it receives

add evaluation request.

2. The client sends add evaluation request. The extension checks that the

keys of all UDDI entities being evaluated really exists (i.e. the key of the

236 Alexander Mintchev

business service really represents an existing business service in the UDDI

registry) by sending corresponding get requests to the UDDI.

2.1. For each separate evaluation, the extension checks that the value

provided is a valid value within the evaluation system referred by

sending

get all valid values requests to the UDDI registry;

2.2. Having done all checks, the extension saves the corresponding evalua-

tion data structures in its database.

6.2. Finding UDDI artifact based on evaluations. To find a UDDI

artifact, based on evaluations (and potentially on other criteria), the client appli-

cation sends a standard UDDI find request. Let the client wants to find all web-

services, which are evaluated according to the evaluation system uddi:evaluation:

quality. The UDDI find request look as follows:

<find_service xmlns="urn:uddi-org:api_v3">

<findQualifiers>

<findQualifier>approximateMatch</findQualifier>

<findQualifier>uddi:evaluation:quality</findQualifier>

</findQualifiers>

<name>%</name>

<categoryBag>

<keyedReference tModelKey="uddi:6e090afa-33e5-36eb-81b7-

1ca18373f457" keyName="WSDL type" keyValue="service"/>

</categoryBag>

</find_service>

When the extension receives this find service request, it ascertains that

the findQualifier uddi:evaluation:quality is a custom evaluation find qualifier,

extracts this qualifier from the request, and composes a new request find service’

that is analogous to the original one, with the exception that all custom evaluation

find qualifiers are removed. This second request looks like this:

A prototype of an extension to the UDDI registry . . . 237

<find_service xmlns="urn:uddi-org:api_v3">

<findQualifiers>

<findQualifier>approximateMatch</findQualifier>

</findQualifiers>

<name>%</name>

<categoryBag>

<keyedReference tModelKey="uddi:6e090afa-33e5-36eb-81b7-

1ca18373f457" keyName="WSDL type" keyValue="service"/>

</categoryBag>

</find_service>

238 Alexander Mintchev

This second request is sent to the UDDI application. The return type is

a business service list containing 0..n web-service details. The extension receives

the response, parses it and constructs a new response to the client application as

follows: For each service key found in the response from the UDDI registry, the

extension queries its own database to see whether a corresponding evaluation

is presented. If evaluation is presented, than the corresponding web-service

is included in the response of the extension. The extension orders it’s newly

constructed response by evaluation values (if such order is meaningful) and sends

it back to the client.

7. Related work, conclusions and feature work. There exist

already tools that offer similar functionality to the extension presented here.

The site Binding Point [9] offers an intuitive GUI for publication and

search for web-services and allows users to evaluate a web-service. Evaluations

belong to single evaluation scheme, with enumerated values form 1 to 10. The

site sorts the results of any search on the basis of the evaluations provided (if

any). Evaluations are anonymous; any user can give as many evaluations as they

want. Although intuitive and easy to use, this tool does not offer complete UDDI

compatibility, neither the possibility to use multiple evaluations schemes. It is

not clear whether the tool works with some UDDI registry as a back-end, and

whether it is possible to “plug” it to any UDDI registry. On the other hand,

it clearly demonstrates the usage of subjective user evaluations when applied to

web-services.

The Microsoft UDDI registry already allows users of the UDDI registry

to classify their own UDDI artifacts according to subjective criteria [4] “In

addition to geographical location criteria, developers layered standard and custom

categorization schemes in UDDI Services including latency, quality of service,

and SLA.” Indeed, classification is still not an evaluation in that only the owner

of an entity can classify it (i.e. other users can not classify the same entity

with any scheme), but it is a step further that introduces subjective, or quality

categorization schemes into the UDDI registry.

The adoption of the extension to the UDDI registry presented in this

paper depends to a large extend on the success of the UDDI registry as an

enterprise storage of web-services. If companies extensively adopt SOA (service

oriented architecture), they will most probably use the UDDI registry for storing

and retrieving web-services, and can use the extension described here. In this

A prototype of an extension to the UDDI registry . . . 239

case, the following areas of future development can be outlined:

X Subscription could be introduced to allow clients to receive notifications

regarding changes in the “rating” of a given web-service,

X Web-services hit counters can be introduced: By agreement between a web-

service provider and the extension, the extension could count the hits to

an end-point of a web-service and, hence, introduce additional, “objective”

evaluation for it, namely “the number of times invoked”.

REFERE NCES

[1] Avery Ch., P. Resnick, R. Zeckhauser. The Market for Evaluations.

American Economic Review 89 (1999), No 3, 564–584.

[2] http://www.systinet.com/products/sr/overview

[3] http://uddi.sap.com

[4] http://www.microsoft.com/windowsserver2003/evaluation/overview/

dotnet/uddi.mspx

[5] http://www.oracle.com/technology/tech/webservices/htdocs/uddi/

index.html

[6] http://ws.apache.org/juddi/

[7] http://edocs.bea.com/wls/docs81/webserv/uddi.html#1053247

[8] UDDI Specification, v3:

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

[9] Binding Point site: http://www.bindingpoint.com/default.aspx

240 Alexander Mintchev

Alexander Mintchev

Kliment Ohridski University of Sofia

Faculty of Mathematics and Informatics

Department of Information Technologies

5, J. Bourchier Blvd

1164 Sofia, Bulgaria

e-mail: alexanderdm@fmi.uni-sofia.bg

Received October 16, 2006

Final Accepted September 13, 2007

