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SOME MDS CODES OVER GF (64) CONNECTED WITH
THE BINARY DOUBLY-EVEN [72,36,16] CODE

Stefka Bouyuklieva*

Abstract. MDS [8,4,5] codes over a field with 64 elements are constructed.
All such codes which are self-dual under a Hermitian type inner product are
classified. The connection between these codes and a putative binary self-
dual [72,36,16] code is considered.

1. Introduction. A linear q-ary [n, k] code C is a k-dimensional sub-
space of the vector space F

n
q , where Fq is the finite field of q elements. The

elements of C are called codewords and the (Hamming) weight of a codeword
is the number of its non-zero coordinates. The minimum weight d of C is the
smallest weight among all non-zero codewords of C, and C is called an [n, k, d]
code. For these three parameters, the following bound holds:

Theorem 1 (Singleton bound) [9]. Given an [n, k, d] code, d ≤ n−k+1.

A code for which equality holds in the Singleton bound is called maximum
distance separable, abbreviated MDS code. If C is an MDS code, then every k
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coordinates are an information set for C. The weight distribution of an MDS code
over Fq is determined by its parameters n, k and q. In this paper, we construct
MDS [8,4,5] codes over GF (64). The codes we consider have to be not only MDS
but also self-dual under a Hermitian type inner product.

Let (u, v) : F
n
q × F

n
q → Fq be an inner product in the linear space F

n
q .

The dual code of C is C⊥ = {u ∈ F
n
q : (u, v) = 0 for all v ∈ C}. C⊥ is a linear

[n, n − k] code. If C ⊆ C⊥, C is termed self-orthogonal and if C = C⊥, C is
self-dual. For the self-dual codes k = 1

2n.
In this paper, we consider the following two families of self-dual codes:

1. Binary self-dual codes with inner product

(u, v) = u · v =

n
∑

i=1

uivi

Obviously, all weights in a binary self-dual code are even. If all weights
are divisible by four, the code is doubly-even. Self-dual doubly-even codes
exist only when n is a multiple of 8. Rains [12] proved that the minimum
distance d of a binary self-dual [n, k, d] code satisfies the following bound:

d ≤ 4bn/24c + 4, if n 6≡ 22 (mod 24),

d ≤ 4bn/24c + 6, if n ≡ 22 (mod 24).

Codes achieving this bound are called extremal. If n is a multiple of 24, then
a self-dual code meeting the bound must be doubly-even [12]. Moreover,
for any nonzero weight w in such a code, the codewords of weight w form a
5-design [1]. Therefore the extremal binary doubly-even self-dual codes of
length a multiple of 24 are of particular interest. The extended Golay code
g24 is the unique [24,12,8] code and the extended quadratic residue code q48

is the unique extremal doubly-even code of length 48. The smallest length
for which the existence of an extremal code is not known is 72. That’s why
many papers are devoted to the problem of existence of such codes. Many
properties of the putative doubly-even [72,36,16] codes have been proved
but the main question still remains open.

Recall that σ ∈ Sn is an automorphism of a binary linear code C if C =
σ(C). We say that σ is of type p − (c, f) if σ has a prime order p, can be
presented as a product of c independent cycles and fixes f points. The set of
all automorphisms of C form its automorphism group Aut(C). Of course,
knowledge of the existence of a non-trivial automorphism group is very
useful in constructing a code. The automorphism group of the extended
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Golay code is the 5-transitive Mathieu group M24 of order 210 ·33 ·5·7·11·23
[9]. The automorphism group of q48 is only 2-transitive. It is isomorphic to
the projective special linear group PSL(2, 47) and has order 24 · 3 · 23 · 47
[9].

What can we say about the automorphism group of a putative self-dual
doubly-even [72,36,16] code C? The investigations on this group have been
started by Conway and Pless in [5] where they have proved that the primes
dividing its order, are from the set {2, 3, 5, 7, 11, 17, 23}. Further, Pless [10],
Pless and Thompson [11], Huffman and Yorgov [8], have excluded 11, 17
and 23 from this set. Moreover, following [5], the possible types of the
corresponding automorphisms are 7-(10,2), 5-(14,2), 3-(24,0), 3-(22,6), 3-
(20,12) and 3-(18,18). Dontcheva, van Zanten and Dodunekov in [6] have
proved that if a doubly-even [72,36,16] code has an automorphism of odd
order r > 1, then r = 35, 27, 15, 9, 7, 5, or 3. The possibility r = 35 is
excluded in [14], r = 27 and r = 15 – in [2]. Hence r ≤ 9. Moreover, we
have proved in [2] that automorphisms of types 3-(22,6), 3-(20,12) and 3-
(18,18) are not possible. Recently, it is shown in [3], that the automorphism
group of a binary self-dual doubly-even [72, 36, 16] code is a solvable group
of order 5, 7, 10, 14, 56, or a divisor of 72.

In this paper we consider the structure of a putative self-dual doubly-even
[72,36,16] code having an automorphism of order 9 and its connection with
Hermitian self-dual [8,4,5] codes over a field with 64 elements.

2. Hermitian self-dual codes over Fq, where q = 2s for an even integer s ≥ 2
with

(u, v) =

n
∑

i=1

uivi,

where a = a
√

q for a ∈ Fq. Note that for a, b ∈ Fq, (a + b)
√

q = a
√

q + b
√

q

and aq = a.

In Section 2, we consider the structure of the binary self-dual codes having
an automorphism of order 9. Eventually, we discuss the self-dual [72,36,16] codes
with such an automorphism. Section 3 is devoted to the [8,4,5] MDS codes over
a field with 64 elements.

2. Binary self-dual codes with an automorphism of order 9.
Let C be a binary self-dual code with an automorphism σ of order 9, where

(1) σ = Ω1 . . . ΩcΩc+1 . . . Ωc+f ,
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Ωi = (9i − 8, . . . , 9i), i = 1, . . . , c, and Ωc+i = (9c + i), i = 1, . . . , f . So σ has c
9-cycles and f fixed points and does not have cycles of length 3. Let

F = Fσ(C) = {v ∈ C : vσ = v},

E = Eσ(C) = {v ∈ C : wt(v|Ωi) ≡ 0 (mod 2), i = 1, . . . , c + f},

where v|Ωi is the restriction of v on Ωi. Then the following Lemma holds

Lemma 2. [7]. The code C is a direct sum of the subcodes Fσ(C) and
Eσ(C).

Clearly v ∈ Fσ(C) iff v ∈ C and v is constant on each cycle. Let π :

Fσ(C) → F
c+f
2 be the projection map where if v ∈ Fσ(C), (π(v))i = vj for some

j ∈ Ωi, i = 1, 2, . . . , c + f .

Lemma 3 [4]. If C is a binary self-dual code having an automorphism σ
of type (1) then Cπ = π(Fσ(C)) is a binary self-dual code of length c + f .

Denote by E∗ the code E with the last f coordinates deleted. So E∗

is a self-orthogonal binary code of length cp2 and dimE∗ = dimC − dimF =
c(p2−1)

2 . For v ∈ E∗ we identify v|Ωi = (v0, v1, · · · , vp2−1) with the polynomial

v0 + v1x + · · · + vp2−1x
p2−1 from T for i = 1, . . . , c, where T is the ring of even-

weight polynomials in F2[x]/(xp2

− 1). Thus we obtain the map φ : E∗ → T c.
In order to learn more about the code Cφ = φ(E∗), we need to investigate the
structure of the ring T . In our work [4] we have proved that T = I1 ⊕ I2 where
I1 = {0, xse1, s = 0, 1, 2} is a field of 4 elements with identity e1 = x8 + x7 +
x5 + x4 + x2 + x, and I2 is a field of 26 elements with identity e2 = x6 + x3.
The element α = (x + 1)e2 is a primitive element of I2. We consider the element
δ = α9 = x2 + x4 + x5 + x7 of multiplicative order 7 in I2 and I2 = {0, xsδk, for
0 ≤ s ≤ 8 and 0 ≤ k ≤ 6}. Following Lemma 5 and Corollary 1 from [4], we have
the theorem:

Theorem 4. Cφ = φ(E∗) = M1 ⊕ M2, where Mj = {u ∈ E∗|ui ∈ Ij, i =
1, . . . , c}, j = 1, 2. Moreover, M1 and M2 are Hermitian self-dual codes over the
fields I1 and I2, respectively.

Corollary 5. If C is a binary self-dual code having an automorphism σ
of type (1) then

C = E1 ⊕ E2 ⊕ F

where E1 ⊕ E2 = E, M1 = φ(E∗
1), M2 = φ(E∗

2).

Let us now consider the extremal binary self-dual codes of length 72
having an automorphism of order 9. We discuss the possibilities for such an
automorphism in the next lemma.
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Lemma 6. If C is a binary doubly even self-dual [72, 36, 16] code and
σ ∈ Aut(C) is an automorphism of order 9, then

σ = Ω1Ω2 . . . Ω8

where Ω1, Ω2, . . . , Ω8 are independent cycles of length 9.

P r o o f. As it is proved in [2], if C has an automorphism of order 3, this
automorphism does not fix any coordinate of C. Let σ has c 9-cycles, t 3-cycles,
and f fixed points in its presentation as a product of independent cycles. Then
σ3 is an automorphism of C of order 3 with 3t+ f fixed points. It turns out that
3t + f = 0, hence t = f = 0 and c = 8. �

Theorem 7. If C is a binary doubly even self-dual [72, 36, 16] code and
σ ∈ Aut(C) is an automorphism of order 9, then

C = E1 ⊕ E2 ⊕ F

where E1, E2, and F are doubly-even [72, 8,≥ 16], [72, 24,≥ 16], and [72, 4,≥ 16]
codes, respectively. Moreover, M1 = φ(E1) is a Hermitian quaternary self-dual
[8, 4, 4] code, M2 = φ(E2) is a Hermitian self-dual code over I2

∼= GF (64), and
π(F ) is a binary self-dual [8, 4, 4] code.

P r o o f. Since F is a doubly even code, so should be π(F ). The only
self-dual doubly even code of length 8 is the extended Hamming code e8 with
parameters [8,4,4] [13]. If M1 is a Hermitian quaternary self-dual [8, 4, d1] code,
then E1 will be a binary self-orthogonal [72, 8, 6d1 ]. Hence d1 ≥ 4. The only
Hermitian quaternary self-dual code of length 8 with such minimum weight is e8

considered as a code over F4 [13]. �

It turns out that we know the subcodes E1 and F up to equivalence. In
the next Section we consider the possibilities for E2 and its image M2.

3. MDS [8,4,5] codes over GF (64). In classifying mathematical
objects, one should carefully define the concept of isomorphism or – depending
on the conventional terminology – equivalence. For self-dual and self-orthogonal
codes, the definition of equivalence depends on the inner product.

The transformations that we allow in defining equivalence for the Hermi-
tian self-dual codes over the field I2 are the following:

1. permutation of the coordinates,

2. multiplication of the elements in a given coordinate by xt for 0 ≤ t ≤ 8,
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3. application of the substitution x → x2 to the elements in all coordinates
simultaneously.

Two linear codes over I2, C1 and C2, are said to be equivalent if the
codewords of C2 can be obtained from the codewords of C1 via a sequence of
these three transformations.

Theorem 8. If C is a binary doubly even self-dual [72, 36, 16] code and
σ ∈ Aut(C) is an automorphism of order 9, then the code M2 is a Hermitian
self-dual [8, 4, d2 ≥ 4] code over I2

∼= GF (64).

P r o o f. Let v ∈ M2 is a codeword with minimum weight d2. Up to
equivalence

v = (e2, δ
a2 , . . . , δad2 , 0, . . . , 0), 0 ≤ a2 ≤ · · · ≤ ad2

≤ 6.

It is easy to check that e2 + δ = δ3. Using the orthogonality condition and the
above transformations, we have:

• If d2 = 2 then v = (e2, e2, 0, . . . , 0) ⇒ wt(φ−1(v)) = 4;

• If d2 = 3 then v = (e2, δ, δ
3, 0, . . . , 0) ⇒ wt(φ−1(v)) = 12;

• If d2 = 4 then

v = (e2, e2, e2, e2, 0, 0, 0, 0) ⇒ wt(φ−1(v)) = 8 or

v = (e2, e2, δ, δ, 0, 0, 0, 0) ⇒ wt(φ−1(v)) = 12 or

v = (e2, δ, δ
2, δ5, 0, 0, 0, 0) ⇒ wt(φ−1(v)) = 16

Hence d2 ≥ 4. According to the Singleton bound, d2 ≤ 5 and therefore d2 = 4 or
5. �

Here we consider only the case d2 = 5. Up to equivalence, we can take a
generator matrix of the [8,4,5] MDS code in the form:

G =









e2 0 0 0 δa11 δa12 δa13 δa14

0 e2 0 0 δa21 xb22δa22 xb23δa23 xb24δa24

0 0 e2 0 δa31 xb32δa32 xb33δa33 xb34δa34

0 0 0 e2 δa41 xb42δa42 xb43δa43 xb44δa44









where 0 ≤ a11 ≤ a12 ≤ a13 ≤ a14 ≤ 6, 0 ≤ a11 ≤ a21 ≤ a31 ≤ a41 ≤ 6. Using the
orthogonality conditions, we have

e2 + δ9a11 + δ9a12 + δ9a13 + δ9a14 = e2 + δ2a11 + δ2a12 + δ2a13 + δ2a14 = 0
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⇒ e2 + δa11 + δa12 + δa13 + δa14 = 0

So up to equivalence

(a11, a12, a13, a14) = (0, 0, 1, 3), (0, 1, 2, 4) or (0, 1, 5, 6)

To obtain all inequivalent MDS [8,4,5] codes, we use a computer program
with the following constrains:

• e2 + δai1 + δai2 + δai3 + δai4 = 0 for i = 1, 2, 3, 4;

• δaj1+ai1 +xbj2−bi2δaj2+ai2 +xbj3−bi3δaj3+ai3 +xbj4−bi4δaj4+ai4 = 0 for 1 ≤ i <
j ≤ 4;

• (bij , aij) 6= (bis, ais) for j 6= s, i = 1, 2, 3, 4.

Additionally, we check the minimum weight of the constructed subcodes
in any step. In this way we obtain 96 Hermitian self-dual [8,4,5] codes over the
field I2 which lead to 96 inequivalent binary doubly-even [72,24,16] codes. All
these binary codes have the same weight enumerator

W (y) = 1 + 513y16 + 14112y20 + 170856y24 + 1118880y28 + 3772467y32

+6219360y36 + 4413528y40 + 1034208y44 + 33291y48

Nevertheless we have only one possibility for E1 and again one possibility
for F up to equivalence, it is computationally difficult to construct all inequivalent
binary codes which have an automorphism σ and to check if some of them are
extremal. To do that, we have to fix one of these codes, say E2, and to consider
all different, even equivalent, codes E1 and F . So the possibilities are too many
and we have not succeeded to check all of them.
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