
Serdica J. Computing 1 (2007), 171–184

ON THE CONSTRUCTION OF CODES FROM AN

ASYMPTOTICALLY GOOD TOWER OVER F8

Caleb McKinley Shor

Abstract. In 2002, van der Geer and van der Vlugt gave explicit equations
for an asymptotically good tower of curves over the field F8. In this paper,
we will present a method for constructing Goppa codes from these curves as
well as explicit constructions for the third level of the tower. The approach
is to find an associated plane curve for each curve in the tower and then
to use the algorithms of Haché and Le Brigand to find the corresponding
Goppa codes.

1. Introduction. In [2] and [3], Garcia and Stichtenoth gave equations
for infinite families of curves over finite fields of square cardinality that have many
points relative to their genera. One can use these towers to find asymptotically
good towers of error-correcting codes, which are families of codes of increasing
length for which the sum of the relative distance and rate is bounded below by a
positive constant. In order to construct the associated Goppa codes, one method
is to calculate a basis for the Riemann-Roch space associated to a particular
divisor. This is a difficult task because of the singularities involved in each level
of the towers.

ACM Computing Classification System (1998): J.2.
Key words: asymptotically good tower, code construction, desingularization.



172 Caleb McKinley Shor

A number of people have worked towards creating codes from these towers.
Codes from the first few levels can be found in [10], for instance. Work has also
been done to find a basis of L(mQ) for every level in each tower, such as in [1]
and [7].

Since [2] and [3], a number of families of curves with many points relative
to their genera have been found over various base fields. In [9], van der Geer and
van der Vlugt presented a tower over F8, which is the main focus of this paper.
To each curve in this tower, we are able to associate a projective plane curve that
has the same corresponding function field. Once we have the plane curve, we can
use the algorithms of [5] to construct the corresponding codes.

The aim of this paper is to demonstrate code construction from the first
few levels of the tower of van der Geer and van der Vlugt along with a method
to create codes from any level. Throughout, we will follow the function field and
coding theory notation of [8]. In particular, for a linear code C over Fq, one is
often interested in length n, the dimension k, and the minimum distance d. For

such a code, there are qk codewords, and one can decode up to

⌊

d − 1

2

⌋

errors.

2. A tower over F8. The asymptotically good tower of van der Geer
and van der Vlugt (from [9]) can be described as follows: Let C be the closure of
the affine curve in P

1 × P
1 over F2 given by

y2 + y = x + 1 + 1/x,

and let

Di =
{

(p0, . . . , pi) ∈ P
1 × · · · × P

1 : (pj, pj+1) ∈ C for j = 0, 1, . . . , i − 1
}

.

For Ci the normalization of Di, we consider the tower C = (C1, C2, . . . ). For
F0 = F2(x0), the function field Fi associated to Ci is

Fi = Fi−1(xi),

where
x2

j+1 + xj+1 = xj + 1 + 1/xj

for j = 0, . . . , i − 1.
The tower C has the nice property that in each cover, the only points that

are ramified have coordinates in F4
1. van der Geer and van der Vlugt used this

ramification behavior to calculate the genera for every level of the tower.

1There are singular points on the curve Di for i ≥ 3 which can split into multiple points
in the normalization Ci, so we may not be able to uniquely identify a ramified point by its
coordinates in F4.



Construction of codes 173

They also found that the curve C has 14 F8-rational points. Twelve of
these points have coordinates in F8 − {0, 1}, and they split completely in every
level of the tower, giving us 6 · 2n

F8-rational points in the nth level of the tower.
Putting the formulas for the genus and number of points together, they

showed that over F8, one has λ(C) = 3/2. Thus, this tower will lead to a family
of codes with

d/n + k/n ≥ 1 −
2

3
=

1

3
as i → ∞.

Throughout this paper, when working with this tower, we will let ρ and α
be extension elements of F2 with ρ2+ρ+1 = 0 and α3 +α2+1 = 0 (so F4

∼= F2(ρ)
and F8

∼= F2(α)).

2.1. Creating codes. In order to create a code CL(Ci,P, D), one needs
to calculate a basis of the Riemann-Roch space associated to a divisor D and
evaluate the basis elements of this space at points in the divisor P. For notation,
in this section, let Pa0 ,...,ai

denote the point (a0, . . . , ai) ∈ Ci.
There is a unique point P∞,...,∞ ∈ Ci, and we will take our divisor D to

be D = nP∞,...,∞
2. The divisor P will consist of the 6 ·2i points with coordinates

in F8 − {0, 1}.
The first level of the curve is given by the equation

x2
1 + x1 = x0 + 1 + 1/x0.

The principal divisors of x0 and x1 are (x0) = 2P0,∞ − 2P∞,∞ and (x1) = Pρ,0 +
Pρ2,0 − P0,∞ − P∞,∞. By Riemann-Roch, since the genus is 1, there is 1 gap
number. We are missing a pole of order 1 at P∞,∞, and we can generate all
other pole orders with x0 and x1 (noting that x0x1 has a single pole of order 3
at P∞,∞). Since we can calculate a basis for L(mP∞,∞) for any m, the final step
is to evaluate these functions at the points in the support of P, which are the
12 points with coordinates in F8 − {0, 1}, to create the encoding matrix for the
code.

For the second level, this method works. However, for the third level,
for which the genus is 15, using monomials in x0, x1, x2, x3, we only obtain 14
functions in L(29P∞,∞,∞,∞) instead of the expected 15.

2For P a point of degree 1 (such as P∞,...,∞), by Riemann-Roch,

dimL(nP ) ≥ n + 1 − g,

with equality for n > 2g − 2. When dimL(k − 1)P = dimL(kP ), k is called a Weierstrass

gap number, and there are no functions f such that (f)∞ = kP . Since dimL((k − 1)P ) + 1 =
dimL(kP ) for k > 2g − 1, the set of gap numbers lies between 1 and 2g − 1, and there are
precisely g of them.



174 Caleb McKinley Shor

What goes wrong in the third level? We are working with the curves Ci

which are the normalizations of the curves Di. D1 and D2 are smooth, but D3

is not. Roughly speaking, the presence of singular points causes the genus to
drop, which means there are fewer Weierstrass gap numbers, so there are more
functions in L(D). These additional functions in L(D) are rational functions.

Since our monomials have poles at P∞,...,∞, there are only a finite number
of monomials that have a pole of order ≤ n at P∞,...,∞. Thus, one can find all
monomials in L(nP∞,...,∞) in a finite amount of time. Rational functions, on the
other hand, are harder to get a hold of because there are pole cancellations.

It turns out that every asymptotically good tower that has been found
to date has curves with singularities. Thus, the question arises: Given an
asymptotically good tower, is there an algorithmic way to find a basis for L(nP )
on each level of the tower? We will explore one method by writing the curves in
this tower as plane curves.

3. Obtaining plane curves. Consider the function field Fn associated
to the nth level of the tower. The goal of this section is to find a plane curve with
associated function field Fn. Since there is a unique nonsingular curve associated
to every function field, the code created from the normalization of the plane curve
will be equivalent to the code created from the normalization of the nth level of
the tower. The motivation for writing the curve as a plane curve comes from [5]
in which algorithms are given to create a code from a plane curve.

One way to find the plane curve is to find a primitive element for Fn over
F0, i.e., an element αn ∈ Fn such that Fn

∼= F0(αn). With αn and its associated
minimal polynomial fn(y) ∈ F0[y] = F2(x0)[y] over F0, we have a plane curve in
variables x0 and y given by fn(y) = 0. We can then clear the denominators of
any x0 terms to wind up with an element φn(x0, y) ∈ F2[x0, y]. With φn, one can
use [5] to construct the associated Goppa code.

Theorem 1. There exists φn(x, y) ∈ F2[x, y] such that

Fn
∼= F0(xn)/(φn(x0, xn)).

In other words, xn is a primitive element for Fn/F0.

P r o o f. By induction on n.
For n = 1,

F1 = F2(x0, x1)

/(

x2
1 + x1 + x0 + 1 +

1

x0

)

= F2(x0, x1)/(x0x
2
1 + x0x1 + x2

0 + x0 + 1).



Construction of codes 175

So φ1(x, y) = xy2 + xy + x2 + x + 1 ∈ F2[x, y]. The statement is true for n = 1.
Now, suppose the statement is true for n = k − 1. Then there is a

polynomial φk−1(x, y) ∈ F2[x, y] such that

Fk−1
∼= F2(x0, xk−1)/(φk−1(x0, xk−1)).

We have the field isomorphism

π : F2(x0, . . . , xk−1) → F2(x1, . . . , xk)

xi 7→ xi+1.

Thus, since
φk−1(x0, xk−1) = 0,

we also have
φk−1(x1, xk) = 0.

Since

x2
1 = x1 + x0 + 1 +

1

x0

,(1)

we can reduce all powers of x1 to be elements of F2(x0) + x1F2(x0). Thus,

φk−1(x1, xk) = f(x0, xk) + x1 · g(x0, xk),

for f(x, y), g(x, y) ∈ F2(x, y). In particular,

x1 =
f(x0, xk)

g(x0, xk)
,

so x1 ∈ F2(x0, xk). Using (1) from above, we have

x0 + 1 +
1

x0

= x2
1 + x1

=

(

f(x0, xk)

g(x0, xk)

)2

+
f(x0, xk)

g(x0, xk)
.

Thus,

x0 + 1 +
1

x0

+

(

f(x0, xk)

g(x0, xk)

)2

+
f(x0, xk)

g(x0, xk)
= 0,

so we have a relation between x0 and xk. We clear denominators and let the
resulting minimal polynomial be φk(x0, xk).



176 Caleb McKinley Shor

By induction,

F2(x0, xk−1) ∼= Fk−1 = F2(x0, . . . , xk−1).

Since F2(x0, . . . , xk−1) is isomorphic to F2(x1, . . . , xk), we have

F2(x1, xk) ∼= F2(x1, . . . , xk).

From above, x1 ∈ F2(x0, xk), so

F2(x0, xk) ∼= F2(x0, x1, xk)

∼= F2(x0)(x1, xk)

∼= F2(x0)(x1, . . . , xk) (by induction)
∼= Fk.

Thus, we have found φk(x, y) ∈ F2[x, y] such that

Fk
∼= F2(x0, xk)/(φk(x0, xk)),

and so the claim is true for all positive integers n. �

For each n, we have a polynomial relation

φn(x0, xn) = 0,

which defines a curve Dn ⊂ P
1(F2)×P

1(F2). Removing finitely many points with

x0 = ∞ or xn = ∞, we have an affine curve in F2

2
. In the projective closure, we

add finitely many points to obtain a curve Cn, which is birationally equivalent to
Dn and hence has an isomorphic function field.

Using the method described above, one can obtain equations for plane
curves associated to any level of the tower. The first few levels of the tower are
given by:

φ1(x, y) = xy2 + xy + x2 + x + 1;

φ2(x, y) = x3y4 + x2y4 + xy4 + x4 + x3y + x2y2 + xy + 1;

φ3(x, y) = x7y8 + x6y8 + x5y8 + x6y6 + x7y4 + x6y5 + x5y6 + x3y8

+x5y5 + x2y8 + x7y2 + x6y3 + x3y6 + xy8 + x8 + x7y

+x5y3 + x4y4 + x3y5 + x2y6 + x2y5 + x4y2 + x3y3

+x2y3 + xy4 + x4 + xy2 + xy + 1.



Construction of codes 177

Note that the equations get large quickly, with ◦(φn) = 2n+1 − 1.

4. Effective construction. In this section, we give the results of
applying the algorithms from [5] to the absolutely irreducible projective plane
curve C given by φ3(X,Y,Z) = 0, where

φ3(X,Y,Z) = X8Z7 + X7Y 8 + X7Y 4Z4 + X7Y 2Z6 + X7Y Z7 + X6Y 8Z

+X6Y 6Z3 + X6Y 5Z4 + X6Y 3Z6 + X5Y 8Z2 + X5Y 6Z4

+X5Y 5Z5 + X5Y 3Z7 + X4Y 4Z7 + X4Y 2Z9 + X4Z11

+X3Y 8Z4 + X3Y 6Z6 + X3Y 5Z7 + X3Y 3Z9 + X2Y 8Z5

+X2Y 6Z7 + X2Y 5Z8 + X2Y 3Z10 + XY 8Z6 + XY 4Z10

+XY 2Z12 + XY Z13 + Z15.

There are 20 singular points in the closure of F2 corresponding to the
following points:

P1 = (1 : 0 : 0) P2 = (0 : 1 : 0) P3 = (ρ : 1 : 1)

P4 = (1 : ρ : 1) P5 = (ρ : 0 : 1) P6 = (α : α2 : 1)

P7 = (α : α3 : 1) P8 = (α3 : α : 1) P9 = (α3 : α5 : 1),

along with their conjugate points from the Galois action of F4 or F8 over F2

(denoted P ′
3, P

′
4, P

′
5, P

′
6, P

′′
6 , P ′

7, P
′′
7 , P ′

8, P
′′
8 , P ′

9, and P ′′
9 ).

By a sequence of blowing-ups, we compute the desingularization tree. For
each singular point Pi, we denote the result of the jth blowing-up by Qi,j. The
resulting non-singular infinitely near points are given in Table 1.

The components of the adjunction divisor can be calculated from the
desingularization tree. To simplify notation, let the F2-rational divisors R1, . . ., R8



178 Caleb McKinley Shor

P1 : (y, z) = (0, 0)
r = 7

−→ Q1,1 : (y, z1) = (0, 0)

P2 : (x, z) = (0, 0)
r = 7

−→























Q2,1 : (x, z1) = (0, ρ)
Q2,2 : (x, z1) = (0, ρ2)
Q2,4 : (x1, z) = (0, 0)
Q2,5 : (x, z2) = (0, ρ)
Q2,6 : (x, z2) = (0, ρ2)

P3 : (x, y) = (ρ, 1)
r = 2

−→

{

Q3,2 : (x, y2) = (ρ, 1)
Q3,3 : (x, y2) = (ρ, ρ2)

P4 : (x, y) = (1, ρ)
r = 2

−→

{

Q4,4 : (x, y4) = (1, ρ)
Q4,5 : (x, y4) = (1, ρ2)

P5 : (x, y) = (ρ, 0)
r = 2

−→

{

Q5,2 : (x, y2) = (ρ, 1)
Q5,3 : (x, y2) = (ρ, ρ2)

P6 : (x, y) = (α, α2)
r = 2

−→

{

Q6,1 : (x, y1) = (α, α)
Q6,2 : (x, y1) = (α, α3)

P7 : (x, y) = (α, α3)
r = 2

−→

{

Q7,1 : (x, y1) = (α, α)
Q7,2 : (x, y1) = (α, α3)

P8 : (x, y) = (α3, α)
r = 2

−→

{

Q8,1 : (x, y1) = (α3, α5)
Q8,2 : (x, y1) = (α3, α6)

P9 : (x, y) = (α3, α5)
r = 2

−→

{

Q9,1 : (x, y1) = (α3, α5)
Q9,2 : (x, y1) = (α3, α6)

Table 1. Blow-ups of all singular points

be as follows:

R1 = Q1,1,

R2 = Q2,1 + Q2,2,

R3 = Q2,4,

R4 = Q2,5 + Q2,6,

R5 = Q3,2 + Q3,3 + Q′
3,2 + Q′

3,3,

R6 = Q4,4 + Q4,5 + Q′
4,4 + Q′

4,5,

R7 = Q5,2 + Q5,3 + Q′
5,2 + Q′

5,3,

R8 = Q6,1 + Q6,2 + Q′
6,1 + Q′

6,2 + Q′′
6,1 + Q′′

6,2 + Q7,1 + Q7,2

+Q′
7,1 + Q′

7,2 + Q′′
7,1 + Q′′

7,2 + Q8,1 + Q8,2 + Q′
8,1 + Q′

8,2

+Q′′
8,1 + Q′′

8,2 + Q9,1 + Q9,2 + Q′
9,1 + Q′

9,2 + Q′′
9,1 + Q′′

9,2.



Construction of codes 179

The adjunction divisor is then the degree-152 divisor

A = 42R1 + 6R2 + 6R3 + 18R4 + 2R5 + 4R6 + 2R7 + R8.

Comparing the nonsingular model of C to the third level of the original
tower, we find correspondences between points, given in Table 23.

Point on the plane curve model Point on the third

level of the tower

Q1,1 P∞,∞,∞,∞

Q2,1 and Q2,2 Pρ,0,∞,∞ and Pρ2,0,∞,∞

Q2,4 P0,∞,∞,∞

Q2,5 and Q2,6 P1,ρ,0,∞ and P1,ρ2,0,∞

Table 2. Correspondence between plane curve and tower points

We will let D = nR1 (= nQ1,1). However, rather than dealing with
an arbitrary value for n, it turns out that once we have calculated a basis for
L(29R1), we can use the functions in that basis to (multiplicatively) generate all
functions with higher pole orders.

As for P, we will take the points to be all of the points with affine
coordinates in F8 − {0, 1}. There are 36 points of the form (αi : αj : 1) on
the curve. Twelve of these are singular points which split into the non-singular
points in the support of R8, and the other 24 are non-singular points. Let the
divisor R9 denote the sum of these 24 non-singular points. Thus, our divisor

P = R8 + R9

consists of 48 points with coordinates in F8 (which correspond to the 48 points
with coordinates in F8 − {0, 1} in the third level of the tower).

With the parametrizations of X, Y , and Z at all of the points in the
adjunction divisor A and the divisor D, we can begin to search for a form G0

with

(G0) ≥ A + D

= 71R1 + 6R2 + 6R3 + 18R4 + 2R5 + 4R6 + 2R7 + R8.

3Aside from the given points in the table, all other points on the plane curve model have
Z = 1, so we can use the X and Y coordinates of a point on the plane model to determine the
x0 and x3 coordinates of the corresponding point in the tower. For instance, when Z = 1, the
four points in R5 have (X, Y ) = (ρ, 1) or (ρ2, 1), and these correspond to the four points Pρ,1,ρ,1,
Pρ2,1,ρ,1, Pρ,1,ρ2,1, and Pρ2,1,ρ2,1.



180 Caleb McKinley Shor

Choosing forms that vanish at points in the support of A, we obtain the
form

G0 = Y (Y + Z)(X + Z)4Z2(Y 3 + Y 2Z + Y 3)(Y 3 + Y Z2 + Y 3),

so that

(G0) = 72R1 + 6R2 + 6R3 + 20R4 + 2R5 + 4R6 + 2R7 + R8 + R9,

and hence (G0) ≥ A + D.
The next step is to search for all forms G of degree 14 so that (G) ≥

(G0) − D. We do this by finding the local parametrizations of the forms X, Y ,
and Z at all of the points in the support of G0, from which one can get the local
parametrizations of all monomials of degree 14. Then, one searches for linear
combinations of these monomials that give the appropriate levels of vanishing.
The result is a set of linearly independent forms {Gi : i = 1, . . . , 15} for which
{Gi/G0 : i = 1, . . . , 15} forms a basis for L(D). Note that while some of these
functions may have the same pole order at Q1,1, one can take linear combinations
to obtain the 15 different pole orders.

To create the code, we evaluate the functions in L(D) at the points in
the support of P = R8 +R9. Since these points are all in the open set defined by
Z 6= 0, by a change of coordinates, we can consider affine coordinates x = X/Z
and y = Y/Z. The basis elements for L(D), in affine coordinates, are given in
Table 3.

Returning to the question of the missing function on the third level of the
tower, it turns out that we were missing a function with a pole of order 21. This
function, in coordinates (x0, x1, x2, x3), is

(x7
0 + 1)x3(x

3
3 + 1)

(x0 + 1)4(x7
3
+ 1)

.

Note that even if we had found this function, the numerator and denominator
vanish on points with coordinates in F8 − {0, 1}, so evaluating this function at
these points requires more work.

For any function f in L(D) and any point P in P, if f(P ) = 0

0
, then we

blow-up P and apply a monoidal transformation to f . After a finite sequence
of blowing-ups and transformations, the either the numerator or denominator
will cease to vanish. In fact, the denominator will cease to vanish because our
functions only have poles at Q1,1. Thus, we will get a meaningful result, so we can
create our encoding matrix. The results of these function evaluations at certain
points in P are in Table 4 and Table 5.



Construction of codes 181

Order Function

0 1

8 x

12
y

g0

(

(1 + y3)(x2 + x3 + x6) + (y3 + y7)(x + x4 + x5)
)

14
1

g0

(

(y3 + y4 + y5 + y6)(1 + x2 + x4 + x6)
+x3(1 + y + y2) + (x + x5)(1 + y2 + y8)

)

15
y

g0

(

(y3 + y4 + y5 + y6)(1 + x2 + x4 + x6)
+(x + x5)(y + y2 + y7) + x3(1 + y + y2)

)

16 x2

20
y

g0

(

(y3 + y7 + x7(1 + y3) + x4(1 + y7)
)

21
1

g0

(

(1 + x7)y2(1 + y3)
)

22
x

g0

(

(y3 + y5 + y6 + y8)(1 + x2 + x6 + x4)
+(1 + y2 + y4)(x + x3 + x5) + x4(1 + y8)

)

23
x

g0

(

(1 + y3)(x + x3 + x5) + (y3 + y7)(1 + x2 + x4 + x6)
)

24
1

g0

(

(y3 + y4 + y5 + y6)(x2 + x3 + x5 + x6) + 1 + x8

+x7(y + y2) + x4(1 + y + y2) + x(y2 + y8) + x5(y + y8)

)

26
1

g0

(

1 + (y3 + y4 + y5 + y5)(x3 + x5) + x + x7

+(1 + y2 + y8)(1 + x2 + x4 + x6) + x8y(1 + y)

)

27
1

g0





(1 + y2 + y3 + y7 + y8)(x2 + x3 + x5 + x6) + x(1 + y7)
+(x3 + x5)(y + y8) + x4(1 + y4 + y5 + y6) + y6

+x8y(1 + y + y2) + x7y4(1 + y + y3)





28
xy

g0

(

y3 + y7 + x7(1 + y3) + x4(1 + y7)
)

29
1

g0





1 + (y + y3 + y4)(x3 + x4 + x5) + x4 + y7(x3 + x5 + x7)
+(y2 + y5 + y6)(x2 + x6 + x7 + x8) + x(y6 + y7)

+x8(1 + y6)





Table 3. Pole orders of basis elements for L(29Q1,1) with x = X/Z, y = Y/Z, and
g0(x, y) = G0(x, y, 1) = (x + 1)4y(y7 + 1)



182 Caleb McKinley Shor

Q6,1 Q6,2 Q7,1 Q7,2 Q8,1 Q8,2 Q9,1 Q9,2

f0 1 1 1 1 1 1 1 1

f8 α α α α α3 α3 α3 α3

f12 α 0 α 0 α α4 α α4

f14 α3 0 α3 0 α4 0 α4 0

f15 α2 α4 α5 α3 1 α α5 α4

f16 α2 α2 α2 α2 α6 α6 α6 α6

f20 α α2 α α2 α5 0 α5 0

f21 1 α5 α α6 α2 α α6 α5

f22 α5 0 α5 0 α6 1 α6 1

f23 α α5 1 α4 α2 α4 α5 1

f24 α5 α4 α5 α4 α6 0 α6 0

f26 0 α 0 α α α6 α α6

f27 α2 α6 0 α3 α4 α α2 1

f28 α2 α3 α2 α3 α 0 α 0

f29 0 α α3 1 α4 1 α4 α

Table 4. Basis elements of L(29Q1,1) evaluated at certain points in P

In order to create a code with dimension k > 15, one can use the functions
in L(29Q1,1) to (multiplicatively) generate functions with larger pole orders.
(Note that we really can do this.) Given the function

fl = fj1fj2 . . . fjn

with jm ∈ I for m = 1, 2, . . . , n (and
∑

jm = l), one can calculate fl(P ) by

fl(P ) = fj1(P )fj2(P ) . . . fjn
(P ).

Equivalently, to calculate the row in the encoding matrix corresponding to fl, one
can multiply coordinate-wise the rows corresponding to fj1 , fj2 , . . . , fjn

. This
will produce a code with the following parameters:

length = 48
dimension = k

distance ≥ 34 − k.



Construction of codes 183

(α, α) (α, α4) (α, α5) (α, α6) (α3, α2) (α3, α3) (α3, α4) (α3, α6)

f0 1 1 1 1 1 1 1 1

f8 α α α α α3 α3 α3 α3

f12 0 α 0 α α α α4 α4

f14 α5 α2 α5 α2 1 1 α5 α5

f15 0 α4 1 1 α α6 0 α6

f16 α2 α2 α2 α2 α6 α6 α6 α6

f20 α2 α α2 α α5 α5 0 0

f21 α4 α2 α α4 α3 α4 α4 α6

f22 α6 1 α6 1 α α α5 α5

f23 α6 α6 α2 α4 α 1 α α6

f24 α4 α5 α4 α5 α6 α6 0 0

f26 1 α5 1 α5 α3 α3 1 1

f27 α5 1 α3 α2 α5 α5 0 α6

f28 α3 α2 α3 α2 α α 0 0

f29 α2 1 1 α6 0 α2 0 1

Table 5. Basis elements of L(29Q1,1) evaluated at certain points in P

Acknowledgments. I would like to thank Emma Previato for encou-
ragement and many useful conversations. This work was supported by NSF grant
DMS-0205643.

REFERE NCES

[1] Aleshnikov I., V. Deolalikar, V. Kumar, H. Stichtenoth. Towards
a basis for the space of regular functions in a tower of function fields meeting
the Drinfeld-Vladuţ bound. In: Finite Fields and Applications (Eds D.
Jungnickel, H. Neiderreiter) Springer, Berlin-Heidelberg, 2001.

[2] Garcia A., H. Stichtenoth. A tower of Artin-Schreier extensions of
function fields attaining the Drinfeld-Vladuţ bound. Inv. Math. 121 (1995),
211–222.



184 Caleb McKinley Shor

[3] Garcia A., H. Stichtenoth. On the asymptotic behaviour of some
towers of function fields over finite fields. J. Number Theory 61, 147, (1996),
248–273.

[4] Greuel G.-M., G. Pfister, H. Schönemann. Singular 2.0, A Computer
Algebra System for Polynomial Computations. Centre for Computer
Algebra, University of Kaiserslautern, 2001,
http://www.singular.uni-kl.de.

[5] Haché G., D. Le Brigand. Effective construction of algebraic geometry
codes. IEEE Trans. Inform. Theory 41, 6 (1995), 1615–1628.

[6] Martin J. I. F., Ch. Lossen. A Singular 2.0 Library for Applications
to Algebraic Geometry Codes. Centre for Computer Algebra, University of
Kaiserslautern, 2001, http://www.singular.uni-kl.de.

[7] Shum K. W., I. Aleshnikov, P. V. Kumar, H. Stichtenoth, V.

Deolalikar. A low-complexity algorithm for the construction of algebraic-
geometric codes better than the Gilbert-Varshamov bound. IEEE Trans.

Inform. Theory 47, 6 (2001), 2225–2241.

[8] Stichtenoth H. Algebraic Function Fields and Codes. Springer-Verlag,
Berlin/Heidelberg/New York, 1993.

[9] van der Geer G., M. van der Vlugt. An asymptotically good tower
of curves over the field with eight elements. Bull. London Math. Soc. 34, 3

(2002), 291–300.

[10] Voss C., T. Høholdt. An explicit construction of a sequence of codes
attaining the Tsfasman-Vlăduţ-Zink bound. The first steps. IEEE Trans.

Inform. Theory 43 (1997), 128–135.

Caleb McKinley Shor

Bates College Math Department

3, Andrews Road

Lewiston, ME 04240

e-mail: cshor@bates.edu

Received October 23, 2006

Final Accepted June 27, 2007


