
Serdica J. Computing 1 (2007), 157–170

ON THE ERROR-CORRECTING PERFORMANCE OF

SOME BINARY AND TERNARY LINEAR CODES

Tsonka S. Baicheva

Abstract. In this work, we determine the coset weight spectra of all binary
cyclic codes of lengths up to 33, ternary cyclic and negacyclic codes of lengths
up to 20 and of some binary linear codes of lengths up to 33 which are
distance-optimal, by using some of the algebraic properties of the codes
and a computer assisted search. Having these weight spectra the monotony
of the function of the undetected error probability after t-error correction

P
(t)
ue (C, p) could be checked with any precision for a linear time. We have

used a programm written in Maple to check the monotony of P
(t)
ue (C, p) for

the investigated codes for a finite set of points of p ∈ [0, p

q−1] and in this
way to determine which of them are not proper.

I. Introduction. Environmental interference and physical defects in the
communication medium can cause random bit errors during data transmission.
One way of achieving more reliable communication is to incorporate some kind
of error-correcting codes. Then an encoder forms a codeword from an incoming
message. The codeword consists of the message and some redundant information.

ACM Computing Classification System (1998): G.2.3.
Key words: Proper codes, binary cyclic codes, ternary cyclic and negacyclic codes.

158 Tsonka S. Baicheva

The codeword is transmitted over the channel and at the receiver a decoder is
used to decide upon which codeword is most likely the transmitted one. Provided
that not too many errors have appeared during transmission the receiver will be
able to recover the message.

In this work, we will focus our attention on the most important class
among error-correcting block codes – the linear codes. These codes have an
accessible mathematical structure which leads to effective coding and decoding
methods and allows to analyze their performance. A particular class of linear
codes – cyclic codes – have properties which make them very easily to implement
and have a wide range of applications.

When we would like to choose the most appropriate code for a given
application we are interested of its error-control capabilities. A measure of these
capabilities is the minimum distance of the code which gives the number of
detectable and correctable errors. Another important measures are the probabi-
lity of undetected error and the probability of correct decoding which are the
object of the investigation in this work.

II. Preliminaries. Let F n
q be an n-dimensional vector space over the

finite field with q elements. A linear code C is a k-dimensional subspace of F n
q . A

k-by-n matrix G having as rows the vectors of a basis of C is called a generator

matrix of C.

Let x, y ∈ F n
q . The Hamming distance d(x, y) between x and y is the

number of positions in which x and y differ, i.e. d(x, y) = |{ ı | xi 6= yi}|. The
minimum distance of a linear code C is the minimum Hamming distance between
all distinct pairs of codewords in C.

With these notations a linear code with length n, dimension k and mini-
mum distance d over Fq is denoted by [n, k, d]q.

The set of all vectors of F n
q orthogonal, with respect to the usual inner

product, to all codewords from C is called the dual code C⊥ to C which is a linear
[n, n−k]q code. A generator matrix of the code C⊥ is a parity check matrix of C.

Let Ai denote the number of codewords of C of weight i. Then the
numbers A0, . . . , An are called the weight distribution of the code C.

A coset of the code C defined by the vector x ∈ F n
q is the set x + C =

{x + c | c ∈ C}. A coset leader of x + C is a vector in x + C of smallest weight.
We will denote by αi for i = 0, 1, . . . , n the number of coset leaders of weight i.

Let us for brevity denote the set of all Ai and αi for i = 0, 1, . . . , n with
Ā and ᾱ correspondingly.

On the error-correcting performance . . . 159

The covering radius R of a code is the largest weight in the set of coset
leaders and the smallest integer R, such that the spheres of radius R around the
codewords completely cover F n

q .

We will say that the block code C detects t errors if each word a′, obtained
from a codeword a by changing of 1, 2, . . . , t symbols, is not a codeword and
corrects t errors if the Hamming distance d(a, a′) is strictly smaller then the
Hamming distance of any other codeword to a′. Then every linear [n, k, d]q code

detects up to d − 1 errors and corrects up to t =

⌊
d − 1

2

⌋

errors.

Consider what happens when a codeword x from an [n, k, d]q code C is
transmitted over a channel and errors occurs during transmission. A transmitter
which transmits codewords through a communication channel to the receiver
where the word y is obtained. The channel adds to the codeword an error vector

which is of the same length and has nonzero entries in the positions where errors
occur, i.e. y = x + e.

A channel model is a description of the probability of receiving a vector y
of length n when a vector x of the same length was transmitted. We say that the
channel has no memory if the errors in different positions occur independently.
The model of a channel we will consider is a q-ary symmetric channel without

memory (qSC). This is a discrete channel with q-ary input, q-ary output and

channel error probability p, where 0 ≤ p ≤
p

(q − 1)
. Any symbol has probability

1 − p of being received correctly and a probability
p

(q − 1)
of being transformed

into each of the other q − 1 symbols.

On the receiver site decoding is performed to a codeword which is nearest
to the received word in the Hamming distance. We assume that the error vector
is always a coset leader. Following this procedure

1. we may find a unique codeword y for which the Hamming distance
d(x, y) is minimal and decode the received word y to x. We decode correctly in
this case. Clearly the probability of correct decoding is given by

Pcorr =

n∑

i=0

αi

(
p

q − 1

)i

(1 − p)n−i

and the probability of error by

Perr = 1 − Pcorr = 1 −
n∑

i=0

αi

(
p

q − 1

)i

(1 − p)n−i.

160 Tsonka S. Baicheva

2. We may detect an error if there are more than one codeword with
minimal Hamming distance d(x, y).

3. We decode incorrectly if the channel error have changed x in such a
way that the closest codeword to y is x′ 6= x; i.e. we have an undetectable error.

Since the code is linear, an undetected error occurs (assuming the code is
used for error detection) iff the error vector e is a nonzero codeword. If i positions
of the codeword are corrupted, i.e. e has Hamming weight i, then the probability

of this error pattern is

(
p

q − 1

)i

(1 − p)n−i and the probability of an undetected

error is given by

Pue(C, p) =

n∑

i=1

Ai

(
p

q − 1

)i

(1 − p)n−i.

Let P
(t)
ue (C, p) denote the probability of an undetected error after t error

correction and Ph(p) denote the probability that an undetectable error pattern
in a coset of weight h occurs with 0 ≤ h ≤ t. Let Qh,l be the number of vectors
of weight l in the cosets of minimum weight h, excluding the coset leaders. Then
(see [7, 9])

Ph(p) =

n∑

l=0

Qh,l

(
p

q − 1

)l

(1 − p)n−l

and

P (t)
ue (C, p) =

t∑

h=0

Ph(p).

III. Criteria for t-proper linear code. When we want to find an
[n, k] code for error detection or correction in some applications, the best choice

is a code with minimum P
(t)
ue (C, p) (optimal code). There are two problems when

we would like to find such a code. Very often the channel error probability is not
a fixed value, i.e. it changes during the time of the transmission. Then a code
optimal for p′ 6= p may not be optimal for p. Moreover even if we know p, there
is in general no method to find an optimal code, except exhaustive search, and
this is in most cases not feasible. Therefore, it is useful to have some criteria by
which we can judge the usefulness of a given code for error detection.

On the error-correcting performance . . . 161

A code C is called t-proper (or only proper when t=0 and the code is

used for error detection only) if the function P
(t)
ue (C, p) is monotonous in the

whole interval

[

0,
p

(q − 1)

]

[8].

Unfortunately, we can check this criterion only for a finite set of points of
p. Discrete sufficient condition for a linear [n, k, d]q code to be t-good was derived
by Dodunekova and Dodunekov [4].

Theorem. If for l = t + 1, . . . , n

(q−(n−k) − q−n)Vq(t) ≥ q−l

l∑

i=t+1

l(i)

n(i)
A

(t)
i

then C is t-good for error correction.

Here A
(t)
i =

∑t
h=0 Qh,i, i = t + 1, . . . , n is the weight distribution of the

vectors in the cosets of weight at most t, excluding the leaders. Vq(t) is the volume
of the q-ary sphere of radius t in the n-dimensional vector space over GF (q) and
m(i) = m(m − 1) . . . (m − i + 1).

If we would like to check monotony of the function P
(t)
ue (C, p) or the

sufficient condition for a code to be proper, or to evaluate P
(t)
ue (C, p) and Pcorr we

have to know Ā, ᾱ and Qh,l. But how hard is the problem of the determination
of these values?

IV. Complexity of checking the conditions for proper linear

error correcting codes. Berlecamp, McEliece and Van Tilborg [3] showed
that the following problem is NP complete: given a k × n (binary) generator
matrix G and an integer w, decide if the code C generated by G contains a
codeword of weight w. In particular, this implies that the problem of finding the
weight distribution of C is NP hard.

McLoughlin [10] proved that determination of the covering radius of the
code is an NP hard problem, i.e determination of ᾱ and Qh,l are also computa-
tionally hard problems.

To check the properness of a linear code we have to know the weight
distributions of the code and of its cosets. Therefore we have to solve compu-
tationally hard problems. That is why these characteristics are known only for
a few classes of codes and there is known only one example of a class of codes
(MDS codes) which are t-proper [7].

162 Tsonka S. Baicheva

In this work Ā, ᾱ and Qh,l of all binary cyclic codes of lengths up to
33, ternary cyclic and negacyclic codes of lengths up to 20 and of some binary
distance-optimal linear codes of lengths up to 33 have been computed with
programmes written on C. To determine Ā we have to generate all the codewords
of the code and to check their weights. To determine ᾱ and Qh,l we can use
some of the algebraic properties of linear codes and the following two methods
are suitable:

Method 1: It is based on the fact that if H = (h1, h2, . . . , hn) is any
parity check matrix of C, then the covering radius R(C) of the code is the smallest
integer ρ such that every nonzero column vector of n − k entries (where k is the
dimension of the code) is a linear combination of not more than ρ columns of H.
To obtain ᾱ we have to make all the combinations of ρ = t+1, . . . , R(C) columns
of H and for each value of ρ to count how many different vectors of n− k entries
have been obtained. We will note that it is not necessary to check values of ρ
from 1 to t because we know that each n−k dimensional vector of weight 1, . . . , t
is a unique coset leader.

The number of the steps required to find ᾱ is
∑R(C)

i=t+1

(
n
i

)
2i and qn−k

words of storage are needed. Therefore, this method is suitable for codes with
big dimensions.

When we have not enough memory to store these qn−k words and when
we would like to determine the values of Qh,l the following method can be used:

Method 2: It uses the definition of R(C) as the weight of the coset
leader of greatest weight. The weight of a coset leader is the minimum Hamming
distance between any vector of the coset and all code vectors. For a code in a
systematic form with generator matrix G = [I|A], where I is the k × k identity
matrix, a vector of each coset can be found by generating all vectors of the form
(0, . . . , 0
︸ ︷︷ ︸

k

, a), a ∈ GF (3)n−k.

The number of steps for this method is proportional to nqn and qk words
are needed to store the code in memory. These qk words can not be stored in
memory if the code is too long. In this case the code has to be generated once
again for each vector.

V. Results. Classifications of binary cyclic and distance-optimal codes,
and of ternary cyclic and negacyclic codes have been done in [6], [11], [1], [2]
correspondingly. Using these classifications as a source Ā, ᾱ and Qh,l for all the
codes have been computed by the methods from the previous section. Then their
properness with any given precision as well as the discrete sufficient condition

On the error-correcting performance . . . 163

can be checked in a linear time. Different codes can be compared and the best
according to the undetected error probability or probability of correct decoding
can be chosen.

We have used a programm written in Maple to check the monotony of

P
(t)
ue (C, p) for the investigated codes for a finite set of points of p ∈

[

0,
p

q − 1

]

with a step of 10−5 and in this way to determine all not t-proper codes. The
results are presented in the tables below.

Table 1. Binary cyclic codes.

No [n,k,d] generator polynomial proper
1. [7,4,3]∗ 1101 t = 0, 1
2. [7,3,4] 10111 t = 0, 1
3. [9,3,3]∗ 1001001 t = 0, 1
4. [9,2,6]o∗ 11011011 t = 0, 1, 2
5. [15,11,3]o∗ 11001 t = 0, 1
6. [15,10,4]o 101011 t = 0, 1
7. [15,9,3] 1001111 t = 0, 1
8. [15,9,4]o 1011101 t = 0, 1
9. [15,8,4]o 11010001 t = 0, 1
10. [15,8,4]o 11100111 t = 0, 1
11. [15,7,3]∗ 110111011 t = 0
12. [15,7,5]o∗ 100010111 t = 0, 1, 2
13. [15,6,6]o 1011001101 t = 0, 1, 2
14. [15,6,6]o∗ 1100111001 t = 0, 1, 2
15. [15,5,7]o∗ 10000100001 t = 0, 1, 2, 3
16. [15,4,6] 110001100011 t = 0, 1
17. [15,4,8]o 100110101111 t = 0, 1, 2, 3
18. [15,2,10]o∗ 11011011011011 t = 0, 1, 2, 3, 4
19. [17,9,5]o∗ 100111001 t = 0, 1, 2
20. [17,8,6]o 1101001011 t = 0, 1, 2
21. [21,16,3]o∗ 100011 t = 0, 1
22. [21,15,3]∗ 1110101 t = 0, 1
23. [21,15,4]o 1100101 t = 0, 1
24. [21,14,4]o 0011111 t = 0, 1
25. [21,13,3]∗ 01001011 t = 0, 1
26. [21,13,4]o∗ 101111101 t = 0, 1
27. [21,12,4] 1111011101 t = 0, 1
28. [21,12,5]∗ 1100110111 t = 0, 1, 2
29. [21,11,6]o 10101011001 t = 0, 1, 2
30. [21,10,5] 100110000101 t = 0, 1, 2

164 Tsonka S. Baicheva

No [n,k,d] generator polynomial proper
31. [21,9,6] 1011001010011 t = 0, 1, 2
32. [21,9,8]o 1001001000001 t = 0, 1, 2, 3
33. [21,8,6] 11101011110101 t = 0, 1, 2
34. [21,8,6] 10110111101101 t = 0, 1, 2
35. [21,7,8]o 110001110111001 t = 0, 1, 2, 3
36. [21,6,7]∗ 1010110011101111 t = 0, 1, 2, 3
37. [21,6,8]o 1010010011001011 t = 0, 1, 2, 3
37. [21,5,10]o∗ 11111010100110001 t = 0, 1, 2, 3, 4
39. [21,4,9]∗ 110100011010001101 t = 0, 1, 2, 3, 4
40. [21,3,12]o 1011100101110010111 t = 0, 1, 2, 3, 4, 5
41. [21,2,14]o∗ 11011011011011011011 t = 0, 1, 2, 3, 4, 5, 6
42. [23,12,7]o∗ 110001110101 t = 0, 1, 2, 3
43. [23,11,8]o 1010010011111 t = 0, 1, 2, 3
44. [27,2,18]o∗ 11011011011011011011011011 t = 0, 1, 2, 3, 4, 5, 6, 7, 8
45. [31,26,3]o∗ 101001 t = 0, 1
46. [31,25,4]o 1111011 t = 0, 1
47. [31,21,5]o∗ 10110101101 t = 0, 1, 2
48. [31,21,5]o∗ 11001110101 t = 0, 1, 2
49. [31,21,5]o∗ 10010110111 t = 0, 1, 2
50. [31,20,6]o 111011110111 t = 0, 1, 2
51. [31,20,6]o 101010011111 t = 0, 1, 2
52. [31,20,6]o 110111011001 t = 0, 1, 2
53. [31,16,5] 1001000011000111 t = 0, 1, 2
54. [31,16,6] 1100011110110101 t = 0, 1, 2
55. [31,16,7] 1101000100000001 t = 0, 1, 2, 3
56. [31,16,7] 1001110000101101 t = 0, 1, 2, 3
57. [31,15,6] 10100100011011111 t = 0, 1, 2
58. [31,15,8]o 10111001100000011 t = 0, 1, 2, 3
59. [31,15,8]o 11011000101001001 t = 0, 1, 2, 3
60. [31,15,8]o 11100111111001101 t = 0, 1, 2, 3
61. [31,11,11]o∗ 100001100101100111011 t = 0, 1, 2, 3, 4, 5
62. [31,11,11]o∗ 101010000011100110111 t = 0, 1, 2, 3, 4, 5
63. [31,11,10] 111011001110000010101 t = 0, 1, 2, 3, 4
64. [31,10,12]o 1100010101110101001101 t = 0, 1, 2, 3, 4, 5
65. [31,10,12]o 1111110000100101011001 t = 0, 1, 2, 3, 4, 5
66. [31,10,10] 1000111010000101110001 t = 0, 1, 2, 3, 4
67. [31,6,15]o∗ 11011001111010010101110001 t = 0, 1, 2, 3, 4, 5, 6, 7
68. [31,5,16]o∗ 101101010001110111110010011 t = 0, 1, 2, 3, 4, 5, 6, 7

In the first three tables cyclic and negacyclic codes are given. Only codes which
are proper for error correction are included and their length, dimension, minimum

On the error-correcting performance . . . 165

Table 2. Ternary cyclic codes.

No [n,k,d] generator polynomial proper
1. [4,1,4]o∗ 1211 t = 0, 1
2. [8,5,3]o∗ 1011 t = 0, 1
3. [8,4,4]o 11012 t = 0, 1
4. [8,3,5]o 102111 t = 0, 1, 2
5. [8,3,4] 120012 t = 0, 1
6. [8,2,6] 1120221 t = 0, 1, 2
7. [8,2,4] 1020102 t = 0, 1
8. [8,1,8]o∗ 12121212 t = 0, 1, 2, 3
9. [10,5,4]∗ 112122 t = 0, 1
10. [10,1,10]o∗ 1212121212 t = 0, 1, 2, 3, 4
11. [11,6,5]o∗ 102122 t = 0, 1, 2
12. [11,5,6]o 1222101 t = 0, 1, 2
13. [11,1,11]o∗ 11111111111 t = 0, 1, 2, 3, 4, 5
14. [13,10,3]o∗ 1112 t = 0
15. [13,9,3]o 10011 t = 0
16. [13,7,5]o∗ 1022201 t = 0, 1, 2
17. [13,7,4]∗ 1222121 t = 0, 1
18. [13,6,6]o 12200112 t = 0, 1, 2
19. [13,6,6] 11002122 t = 0, 1, 2
20. [13,4,7]o 1120102201 t = 0, 1, 2, 3
21. [13,3,9]o∗ 10111220121 t = 0, 1, 2, 3, 4
22. [13,1,13]o∗ 1111111111111 t = 0, 1, 2, 3, 4, 5, 6
23. [14,1,14]o∗ 12121212121212 t = 0, 1, 2, 3, 4, 5, 6 g&p
24. [16,10,4]o∗ 1101121 t = 0
25. [16,9,5]o 10210122 t = 0, 1
26. [16,8,5] 111210221 t = 0, 1
27. [16,7,6]o 1001222022 t = 0, 1
28. [16,6,6] 11010112212 t = 0, 1
29. [16,3,10]o 10211100102111 t = 0, 1, 2, 3, 4
30. [16,2,12]o 112022101120221 t = 0, 1, 2, 3, 4, 5
31. [16,1,16]o∗ 1212121212121212 t = 0, 1, 2, 3, 4, 5, 6, 7 g&p
32. [20,11,5] 1202000202 t = 0
33. [20,9,6] 121102020102 t = 0
34. [20,8,8] 1002122221122 t = 0, 1
35. [20,7,8] 10022121211122 t = 0, 1
36. [20,6,10]o 112100101002221 t = 0, 1, 3
37. [20,6,8] 122110102022112 t = 0, 1, 3
38. [20,5,11] 1012201212020022 t = 0, 1, 2
39. [20,4,12]o 11101210002220212 t = 0, 1, 2, 3
40. [20,1,20]o∗ 12121212121212121212 t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

166 Tsonka S. Baicheva

Table 3. Ternary Negacyclic Codes.

No [n,k,d] generator polynomial good and proper
1. [6,2,3] 10201 t = 0, 1
2. [10,6,4]o∗ 11021 t = 0, 1
3. [10,4,6]o 1110121 t = 0, 1, 2
4. [12,8,3]o∗ 12211 t = 0, 1
5. [12,4,6] 122122211 t = 0, 1, 2
6. [12,2,9]o 12202110122 t = 0, 1, 2, 3, 4
7. [14,8,5]o∗ 1101011 t = 0, 1, 2
8. [14,6,6]o 111202111 t = 0, 1, 2
9. [20,12,5] 112212211 t = 1
10. [20,10,7] 12201101002 t = 0
11. [20,10,6]∗ 11121011012 t = 0, 1, 2
12. [20,8,8] 1122201022211 t = 0, 1, 2
13. [20,6,9] 120121010211212 t = 0, 1
14. [20,4,12] 11021100212101201 t = 0, 1, 2, 3
15. [20,2,15] 1120221011202210112 t = 0, 1, 2, 3, 4, 5, 6

distance, generator polynomial and values of t for which the code is proper are
presented. The generator polynomials are given as sequences of coefficients with
the leading coefficient in the first place. With o distance-optimal codes are marked
and with ∗ the codes having the smallest possible covering radius among the codes
with the given length and dimension. In the last table the results about binary
distance-optimal codes are presented. It turned out that all the codes tested are
proper. In addition their covering radii were determined.

As an illustration how the computed data can be used we present the
graph (Fig. 1) of the undetected error probability of the [21, 10, 4] binary cyclic

Pue

0,0008

0,0006

0,0004

0,0002

0

p

0,50,40,30,10 0,2

t=0

0,012

0,008

0,004

0,016

0

p

0,50,40,30,1 0,20

Pue

t=1

Fig. 1. Pue of [21, 10, 4] binary cyclic code.

On the error-correcting performance . . . 167

Table 4. Binary distance-optimal codes

No [n,k,d] cov. radius No [n,k,d] cov. radius

1. [12,4,6]∗ 4 46. [27,6,12] 11

2. [16,11,4]∗ 2 47. [27,6,12] 10

3. [16,7,6]∗ 4 48. [27,6,12] 10

4. [16,7,6]∗ 4 49. [27,6,12] 11

5. [16,7,6] 5 50. [27,6,12] 10

6. [17,5,8]∗ 6 51. [27,6,12] 10

7. [17,5,8] 7 52. [27,6,12] 11

8. [18,9,6] 4 53. [27,6,12] 11

9. [18,6,8] 7 54. [27,6,12] 10

10. [18,6,8] 7 55. [27,6,12] 11

11. [19,7,8] 7 56. [27,6,12] 10

12. [20,8,8] 7 57. [27,6,12] 11

13. [22,10,8] 7 58. [27,6,12] 10

14. [23,12,7]∗ 3 59. [27,6,12] 11

15. [24,12,8] 7 60. [27,6,12] 11

16. [21,8,8] 6 61. [27,6,12] 10

17. [21,8,8] 7 62. [27,6,12] 11

18. [21,8,8] 7 63. [27,6,12] 11

19. [21,8,8] 7 64. [27,6,12] 11

20. [21,8,8] 7 65. [28,10,10] 8

21. [21,8,8] 7 66. [28,10,10] 8

22. [21,8,8] 8 67. [28,10,10] 8

23. [21,8,8] 8 68. [28,10,10] 8

24. [21,5,10]∗ 8 69. [28,10,10] 8

25. [24,14,6] 4 70. [28,10,10] 8

26. [24,7,10] 8 71. [28,10,10] 8

27. [24,7,10] 8 72. [28,10,10] 8

28. [24,7,10] 8 73. [28,10,10] 8

29. [24,7,10] 8 74. [28,10,10] 8

30. [24,7,10] 8 75. [28,10,10] 8

31. [24,7,10] 8 76. [28,5,14] 12

32. [24,5,12] 10 77. [29,5,14]∗ 12

33. [25,5,12] 11 78. [29,5,14]∗ 12

34. [25,5,12] 11 79. [29,5,14]∗ 12

35. [25,5,12]∗ 10 80. [29,5,14]∗ 12

168 Tsonka S. Baicheva

No [n,k,d] cov. radius No [n,k,d] cov. radius

36. [25,5,12]∗ 10 81. [29,5,14]∗ 12

37. [25,5,12]∗ 10 82. [29,5,14]∗ 12

38. [25,5,12]∗ 10 83. [29,5,14]∗ 12

39. [25,5,12]∗ 10 84. [30,6,14] 11

40. [26,6,12] 11 85. [30,6,14] 11

41. [26,6,12] 11 86. [31,13,9] 7

42. [27,7,12] 10 87. [32,17,8] 6

43. [27,6,12] 11 88. [32,6,16] 12

44. [27,6,12] 11 89. [33,8,14] 11

45. [27,6,12] 11 90. [33,12,11] 9

code. The code has minimum distance 4 and can correct one error. Therefore
t = 0, 1. It is clear from the graph that this code is neither t = 0 nor t = 1
proper if we would like to use it in the whole range of bit error probabilities,
i.e. p ∈ [0, 1

2]. Very often in practice, we are interested in using the code in

a subinterval in the interval p ∈

[

0,
q − 1

q

]

. Discrete sufficient condition for a

binary code to be proper in the subinterval [a, 1
2] of the interval [0, 1

2] is derived
in [5]. According to the results obtained in this work we can make conclusions
about properness of the code also in the subinterval [0, b]. Namely, if the [21, 10, 4]
binary cyclic code is used for error detection in the interval p ∈ [0, 0.21] and for
1-error correction in the interval p ∈ [0, 0.16] it is proper.

On the next graph (Fig. 2) an example of t = 0, 1, 2 proper in the whole
interval [0, 1/2] binary cyclic [21, 10, 5] code is given.

0,0003

Pue

0,0004

0,0001

0,0002

0

p

0,50,40,30,20,10

t=0

0,01

Pue

0,006

0,008

0,004

0,002

0

p

0,50,40,30,20,10

t=1

Pue

0,1

0,08

0

0,06

0,04

0,02

p

0,50,40,30,20 0,1

t=2

Fig. 2. Pue of [21, 10, 5] binary cyclic code

As a last example, comparison between the probability of correct decoding
between two binary [25, 5, 12] distance-optimal codes is presented (Fig. 3).

On the error-correcting performance . . . 169

0,3

Pue

0,8

0,20,1

0,6

0,2

0,4

p

0,50,4

1

0

Fig. 3. Pcorr of two binary [25, 5, 12] distance-optimal codes

VI. Acknowledgement. This work was supported by “Finite Struc-
tures” Marie Curie Host Fellowship for the Transfer of Knowledge project carried
out by the Alfred Rényi Institute of Mathematics in the framework of the Euro-
pean Community’s Structuring the European Research Area programme.

REFERE NCES

[1] Baicheva T. The Covering Radius of Ternary Cyclic Codes with Length
up to 25. Des. Codes Cryptogr. 13 (1998), 223–227.

[2] Baicheva T. On the Covering Radius of Ternary Negacyclic Codes with
Length up to 26. IEEE Trans. Inform. Theory 47 (2001), 413–416.

[3] Berlekamp E. R., R. J. McEliece, H. C. A. van Tilborg. On the
inherent intractability of certain coding problems. IEEE Trans. Inform.

Theory 24 (1978), 384–386.

[4] Dodunekova R., S. Dodunekov. Sufficient conditions for good and
proper linear error correcting codes. Proc. Second International Workshop
on Optimal Codes and Related Topics, Sozopol, Bulgaria, 1998, 62–67.

[5] Dodunekova R., E. Nikolova. Sufficient condotions for the monotonicity
of the undetected error probability for large channel error probabilities.
Problemy Peredachi Informatsii 41 (2005), 3–16 (in Russian); English
translation: Problems Inform. Transmission 41 (2005), 187–198.

170 Tsonka S. Baicheva

[6] Downie D., N. J. A. Sloane. The Covering Radius of Cyclic Codes of
Length up to 31. IEEE Trans. Inform. Theory 31 (1985), 446–447.

[7] Kasami T., S. Lin. On the probability of undetected error for the Maximum
Distance Separable codes. IEEE Trans. Communications 32 (1984), 998–
1006.

[8] Klöve T., V. Korzhik. Error Detecting Codes. Boston, Kluwer Academic
Publishers, 1995.

[9] MacWilliams F. J. A theorem on the distribution of weights in a
systematic code. Bell System Tech. J. 42 (1963), 79–94.

[10] McLoughlin A. The complexity of computing the covering radius of a
code. IEEE Trans. Inform. Theory 30 (1984), 800–804.

[11] Jaffe D. Binary Linear Codes: New Results on Nonexistence. Draft
(Version 0.4), Department of Mathematics and Statistics, University of
Nebraska, April 14, 1997.

Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

P.O.Box 323

5000 Veliko Tarnovo, Bulgaria

e-mail: tsonka@moi.math.bas.bg

Received October 23, 2006

Final Accepted June 27, 2007

