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ON GRAPH-BASED CRYPTOGRAPHY AND SYMBOLIC
COMPUTATIONS

V. A. Ustimenko

Abstract. We have been investigating the cryptographical properties of
infinite families of simple graphs of large girth with the special colouring
of vertices during the last 10 years. Such families can be used for the
development of cryptographical algorithms (on symmetric or public key
modes) and turbocodes in error correction theory. Only few families of
simple graphs of large unbounded girth and arbitrarily large degree are
known.

The paper is devoted to the more general theory of directed graphs of
large girth and their cryptographical applications. It contains new explicit
algebraic constructions of infinite families of such graphs. We show that
they can be used for the implementation of secure and very fast symmetric
encryption algorithms. The symbolic computations technique allow us to
create a public key mode for the encryption scheme based on algebraic
graphs.

1. Introduction. Since well known work by R. Tanner [29] families of
graphs of large girth are instruments in Error Correction Theory (see [29, 13, 14]
on the use of graphs of large girth for the creation of so-called turbocodes).
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The idea to use such families of simple graphs in Cryptography had
been explored in [26, 27, 28, 29, 30, 31, 32, 33, 35]. The cryptoscheme for the
“potentially infinite” text based on the family of graphs with special colouring
of vertex set: the neighbours of each vertex are of different colours, there is a
representative of each colour in the neighbourhood. It is clear that the graphs
have to be regular i.e., the size of the neighbourhood does not depend on the
choice of vertex.

For this purpose we identify the vertex of the graph with the plaintext,
encryption procedure corresponds to the chain of adjacent vertices (walk without
consecutive edges) starting from the plaintext, the information on such chain is
given by the sequence of corresponding colours (the password). We assume that
the end of the chain is the ciphertext. Let ck be the cycle on k-vertices. The
girth of the graph is the length of its smallest cycle.

For each k ≥ 3 there is an infinite family of finite k-regular graphs Gi,
i = 1, 2, . . . of increasing order |Vi| and increasing girth gi (see, for instance
[29, 28]). In case of such a family with the colouring as above we can chose the
length of the password si, where c ≤ si < gi/2 for some chosen j and integer
constant c < gj/2 and work with graphs Gi, i ≥ j. So the potentially infinite
plantspace will be Vi, i ≥ j and potentially infinite keyspace of the size k(k−1)si .
Notice that the absence of short cycles ensure that different passwords convert
chosen plaintext to different ciphertexts. The ciphertext will be always different
from the plaintext. If the minimal size of connected component Gi, i > j is
growing with i, then the encryption scheme is not a block cipher but a stream
cipher. We can consider more general encryption scheme defined by sequence of
ki-regular graphs Gi, i = 1, . . . of nondecreasing degree and increasing girth and
order (see [28, 35]).

Let e(G), v = v(G) be the size (number of edges) and the order (number
of vertices) of the graph G and ex(v, C3, . . . , C2k) be the maximal size of the graph
of order v without cycles C3, . . . , C2k. The following modification of Erdös’ Even
Circuit Theorem the reader can find in [6]:

(1) ex(v.C3, . . . , C2k) ≤ cv1+1/k

where c is positive independent on v constant. This bound is known to be sharp
for k = 2, 3 and 5.

If the size of members Gi of the family of graphs of increasing girth gi is
close to the above bound (in case of, so-called, graphs of large girth gi ≥ Clogki

(vi)
then the size of plainspace and the maximal keyspace for the above encryption
scheme are close to each other (see [29, 28]).
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The important feature of such encryption is the resistance to attacks,
when adversary intercepts the pair plaintext – ciphertext (see [29]), because the
best algorithm of finding the pass between given vertices (by Dijkstra, see [9] and
latest modifications) has complexity v ln v where v is the order of the graph, i.e.,
size of the plainspace. The situation is similar to the checking of the primality of
Fermat’s numbers 22m

+ 1: if the input given by the string of binary digits, then
the problem is polynomial, but if the input is given by just a parameter m, then
the task is NP -complete.

We have an encryption scheme with the flexible length of the password
(length of the chain). If graphs are connected and the length of password is not
restricted, then we can convert each potentially infinite plaintext into the chosen
string. In case of so-called small world graphs we can do such conversion “as fast
as it is possible”.

Finally, in the case of algebraic graphs in sense of N. Biggs (see [2]), when
the vertex set and neighbourhoods of each vertex are algebraic varieties over the
same field, there is an option to use symbolic computations in the implementation
of graph based algorithm. We can create public rules symbolically and use the
above algorithm as public key tool (an example of the implementation of such
public key encryption is in [36]). The first infinite family of algebraic graphs of
large unbounded girth and arbitrary degree had been constructed in [18] (see
[19] for the description of connected components). It had been used in different
software (different finite fields) packages developed via university projects at the
University of South Pacific (Fiji Islands) [35, 37, 39], which serves for 11 remote
island states within Pacific Ocean, Sultan Qaboos University (Oman) [38, 30],
University college of Cariboo (Canada, BC), Ocanagan college, affiliated with
the UBC (Canada), University of Kiev-Mohyla Academy(Ukraine), University of
Maria Curie Sklodowska (Poland). The comparison of the first implementation
of the algorithm (case field F127) with other stream cipher private key algorithm
(RC4) the reader can find in [12].

The graph based encryption scheme had been motivated by the idea that
each computation can be thought as finite automaton. So if we ignore the initial
and accepting states of finite automaton we are getting the graph with labels
on edges. The classical extremal graph theory deals with simple graphs, so our
first step was restricted on graphs of symmetric binary relations without loops.
The next step is reflected in [43] where the analog of P. Erdös’ bound has been
formulated for graphs of binary relations without loops and certain commutative
diagrams. The analog of girth for directed graph is so-called girth indicator. The
size of the graph is the total number of edges. Let Ed(v) be the greatest size of
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directed graph of order v the width girth indicator ≥ d. The following analog of
Erdös’ Even Circuit Theorem has been formulated:

(2) Ed(v) ≤ v1+1/d

This bound turns out to be sharp not only for d = 2, 3 and 5 but for
d = 4, 6 as well.

The paper [43] contains definitions of graphs of large girth (graphs with
girth indicator d and size which is close to the above bound), small world graphs
for this class of graphs, example of directed graphs based encryption. The bound
and related definition the reader can find in Section 4 below.

In current paper we will continue the theory of directed based cryptography.
Instead of colouring of vertices we will consider special “rainbow-like colouring”
of edges in spirit of automata theory. In terms of such colouring we define
graph based private and pubic algorithms (Section 6). We show that Cayley
graphs admit the appropriate colouring. It means that a well known Ramanujan
graphs of high girth defined in [23, 24, 25] (further spectra and girth evaluation
[22]) can be used for the development of cryptographical algorithms (Sections 5,
6). Other examples of directed graphs with rainbow-like colouring of edges are
connected with generalised polygons (finite geometries of simple groups over the
Dynkin diagrams A2, B2 and G2) (Section 7). The known examples of generalised
polygons had been used in works of R. Tanner (turbocodes in Coding Theory),
cryptographical applications of incidence graphs of generalised polygons (case of
simple graphs) the reader can find in [34].

The practical advantage of directed graphs based cryptography in com-
parison with previously used case of simple graphs is much wider option to
construct explicitly algebraic graphs over arbitrarily chosen commutative ring
K (Section 8). Such K-theory lead to very fast cryptoalgorithm (operation in
K = Zpn are much faster than in case of Fpn for large n). In remarks at the
end of Section 8 we compare the speed of some new algorithms with classical
stream cipher RC4 used for the encryption of large data and discuss some specific
features of new encryption schemes. They have principally deferent properties
in comparison with block ciphers (DES, AES etc). The last section contains
conclusions.

2. Requirements on simple graphs and explicit constructions.

The reader can find the missing graph theoretical definitions in [6, 7]. All graphs
we consider are simple, i.e., undirected without loops and multiple edges. Let
V (G) and E(G) denote the set of vertices and the set of edges of G, respectively.
Then |V (G)| is called the order of G, and |E(G)| is called the size of G. A path
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in G is called simple if all its vertices are distinct. When it is convenient, we
shall identify G with the corresponding anti-reflexive binary relation on V (G),
i.e., E(G) is a subset of V (G) × V (G) and write vGu for the adjacent vertices u
and v (or neighbours). The sequence of distinct vertices v0, v1, . . . , vt, such that
viGvi+1 for i = 1, . . . , t − 1 is the pass in the graph. The length of a pass is the
number of its edges. The distance dist(u, v) between two vertices is the length
of the shortest pass between them. The diameter of the graph is the maximal
distance between two vertices u and v of the graph. Let Cm denote the cycle
of length m i.e., the sequence of distinct vertices v0, . . . , vm such that viGvi+1,
i = 1, . . . ,m − 1 and vmGv1. The girth of a graph G, denoted by g = g(G), is
the length of the shortest cycle in G. The degree of vertex v is the number of its
neighbours.

The incidence structure is the set V with partition sets P (points) and L
(lines) and symmetric binary relation I such that the incidence of two elements
implies that one of them is a point and another one is a line. We shall identify I
with the corresponding simple graph.

Let Gi, i = 1, 2, . . . be an infinite family of finite graphs of increasing
order vi, degree ki, girth gi and diameter di.

As we mentioned in the previous section the cryptographical applications
require examples of regular binary relation graphs Gi, i = 1, 2, . . . satisfying the
following properties:

P1. Graphs of large girth, i.e., such that

(3) gi ≥ γlogki
vi

where gi, ki and vi are the girth, degree and order of the graph Γi, respectively,
γ is the constant independent on i. So the size of such graphs is quite close to
the bound (1).

P2. Small world graphs, i.e., graphs such that

(4) di ≤ clogki
vi

where di is the diameter of Γi and c is independent on i constant.
P3. Algebraic graphs defined over the finite commutative ring K.
Let us consider separately the case of family of graphs of unbounded

degree (BD) and the case of unbounded degree (BD).
UD. The natural examples of algebraic graphs are so-called graphs of Lie

type (see [8]), they defined via the Bruhat decomposition of finite simple graphs
of Lie type. The problem is that the girth of them is bounded. The largest
girth (16) corresponds to the incidence graph of generalised octagon related
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to 2F4(Fq), defined over the perfect field of characteristic 2. Most known explicit
constructions of infinite families of regular small world graphs are of girth 4 (see,
for instance).

In [19] the family of connected algebraic graphs CD(n, q), n ≥ 2, q is
prime power ≥ 3 had been constructed. The order of q-regular bipartite graph
CD(n, q is 2qn The girth g(CD(n, q)) of the graph CD(n, q) had been bounded
below by 4/3n.

In [44] it was shown that if n is fixed but q is growing then graphs CD(n, q)
form a family of small world graphs. So we can take q = pn, where p is fixed and
n is growing and obtain the following statement.

Theorem 1. For each prime number p, p > 2 there is a family of small
world algebraic graphs over Fp with the girth ≥ d with the rainbow-like coloring.

BD. Even the task of constructions of families of graphs of large girth of
bounded degree is far from trivial.

The studies of infinite families of graphs of large girth in the sense of
N. Biggs [2] i.e., graphs Gi of bounded degree li and unbounded girth gi such
that gi ≥ γ logli−1(vi) is an important direction in the theory of simple graphs.
The above definition had been motivated by applied problems in Networking (see
[10, 6] and further references).

As it follows from Even Circuit Theorem by Erdös’ γ ≤ 2, but no family
has been found for which γ = 2. Bigger γ’s correspond to the larger girth.
The existence of such families was proven by P. Erdös’ with his well known
probabilistic method (see [6] and further references).

The first explicit examples of families with large girth were given by
Margulis [23, 24, 25] with for some infinite families with arbitrary large valency.
The constructions were Cayley graphs Xp,q of group SL2(Zq) with respect to
special sets of q + 1 generators, p and q are primes congruent to 1 mod 4. Then
independently Margulis and Lubotsky, Phillips, and Sarnak [22] proved that for
each p the constant γ for graphs Xp,q with fixed p is ≥ 4/3. In [4] Biggs and
Boshier showed that this γ is asymptotically 4/3.

The family of Xp,q is not a family of algebraic graphs because the neigh-
bourhood of each vertex is not an algebraic variety over Fq. For each p, graphs
Xp,q, where q is running via appropriate primes, form a family of small world
graph of unbounded diameter.

The first family of connected algebraic graphs over Fq of large girth and
arbitrarily large degree had been constructed in [19]. These graphs are CD(k, q)
as above, where k is growing integer ≥ 2 and odd prime power q is fixed. They
had been constructed as connected component of graphs D(k, q) defined earlier
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(see [18, 20]). For each q graphs CD(k, q), k ≥ 2 form a family of large girth
with γ = 4/3logq−1q of degree q.

Some new examples of simple algebraic graphs with memory of large girth
and arbitrary large degree the reader can find in [41].

Notice that graphs Xp,q are not an algebraic graphs because the neigh-
bourhood of a vertex is not an algebraic variety over Fq of dimension ≥ 1.

Conjecture. For each finite field Fq of odd characteristic the family
CD(n, q), n = 1, 2 . . . is an algebraic over Fq family of small world graphs of
high girth of bounded degree.

The explicit constructions of algebraic families of small world graphs with
girth ≥ 8 of bounded (or unbounded) degree was proven in [11]. The absence of
short cycles insure the absence of cliques in these graphs. So they are essentially
different from small world graph of symmetric binary relation on the set of all
peoples on the earth: two persons know each other (clearly, each university
department is an example of a clique).

3. Cryptosystem requirements and properties of graph based

algorithms. Assume that an unencrypted message, plaintext , which can be
image data, is a string of bits. It is to be transformed into an encrypted string
or ciphertext , by means of a cryptographic algorithm and a key : so that the
recipient can read the message, encryption must be invertible.

Conventional wisdom holds that in order to defy easy decryption, a cryp-
tographic algorithm should produce seeming chaos: that is, ciphertext should look
and test random. In theory an eavesdropper should not be able to determine any
significant information from an intercepted ciphertext. Broadly speaking, attacks
to a cryptosystem fall into 2 categories: passive attacks, in which adversary
monitors the communication channel, and active attacks, in which the adversary
may transmit messages to obtain information (e.g., ciphertext of chosen plaintext).

Attackers hope to determine the plaintext from the ciphertext they capture;
an even more successful attacks will determine the key and thus comprise the
whole set of messages.

An assumption first codified by Kerckhoffs in the nineteen century is that
the algorithm is known and the security of algorithm rests entirely on the security
of the key.

Cryptographers have been improving their algorithms to resist the follow-
ing two major types of attacks:

i) ciphertext only – the adversary has access to the encrypted communications.
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ii) known plaintext – the adversary has some plaintext and its corresponding
ciphertext.

Nowadays the security of the plaintext rests on encryption algorithm (or
private key algorithm), depended on chosen key (password), which has good
resistance to attacks of type (i), and algorithm for the key exchange with good
resistance to attacks of type (ii) (public key algorithm).

The revolutionary classical result on private key algorithm was obtained
by C. Shannon at the end of 40th (see [15, 16] or [28]. He constructed so-called
absolutely secure algorithms, whose keys and strings of random bits at least as
long as a message itself, achieve the seeming impossibility: an eavesdropper is
not able to determine any significant information from obtained ciphertext. The
simplest classical example is the following one-time pad: if pi is the i-th bit of the
plaintext, ki is the i-th bit of the key, and ci is the first bit of the ciphertext, then
ci = pi + ki, where + is exclusive or, often written XOR, and is simply addition
modulo 2. One time pads must be used exactly once: if a key is ever reused, the
system becomes highly vulnerable.

It is clear that the encryption scheme as above, like most private key
algorithm, is irresistible to attacks of type (ii) – you need just subtract pi from
ci and get the key.

The theoretical resistance of well-known RSA algorithms to attacks of
type (ii) rests on our believe that nobody can factor numbers fast.

In the case of our encryption schemes based on k-regular simple graph
of girth g the idea based on fact that finding a pass between 2 given vertices at
a distance d < g/2 of infinite k- regular tree require non polynomial expression
f(k, d) for the number of steps (natural branching process give us k(k − 1)d−1

steps (number of passes between plaintext and ciphertext), the faster general
algorithm is unknown). If the distance d is unknown the problem getting harder,
the complexity f(k, d) is growing, when d is increasing (see [34], in more details).
Recall, that for each k there is an infinite family of finite k-regular graphs of
increasing girth.

For instance, in case of q-regular bipartite graphs D(k, q), k ≥ 2, q is
prime power ≥ 3 we have qn points and qn lines, girth is ≥ (n + 4). So we can
work with passes of length (n + 4)/2. In this case the plainspace (say the set of
points) has cardinality v = qn, so the size of key space is Key = q(q − 1)(n+4)/2.
If q is large, then Key is approximately v1/2. In case of graphs CD(k, q) we have
Key is approximately v2/3.

Let us consider the infinite family of finite generalised 6-gons. They are
(q +1)-regular bipartite graphs with partition sets of cardinality 1+ q + q2 + q3 +
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q4 + q5 each, girth 12 and diameter 5. We shall assume that prime power q > 2
is increasing. In this case we can chose 5 as length of the password. So, the size
of plainspase is v = 1 + q + q2 + q3 + q4 + q5 and the key space has cardinality
Key = (q + 1)q4. We can notice that Key/v is going to 1, when q is going to
infinity.

In fact the above complexity estimates are applicable to directed graph
based algorithms as well.

4. Binary relations and related rainbow-like graphs. The
missing theoretical definitions on directed graphs the reader can find on [27]. Let
Φ be an irreflexive binary relation over the set V , i.e., Φ ∈ V × V and for each v
pair (v, v) is not the element of Φ.

We say that u is the neighbour of v if (v, u) ∈ Φ We use term binary
relation graph for the graph Γ of irreflexive binary relation φ over finite set V
such that for each v ∈ V sets {x|(x, v) ∈ φ} and {x|(v, x) ∈ φ} have same
cardinality. It is a directed graph without loops and multiple edges, see [27] for
more general definitions).

Let Γ be the graph of binary relation. The pass between vertices a and b
is the sequence a = x0 → x1 → . . . xs = b of length s, where xi, i = 0, 1, . . . s are
distinct vertices.

We say that the pair of passes a = x0 → x1 → · · · → xs = b, s ≥ 1 and
a = y0 → y1 → · · · → yt = b, t ≥ 1 form an (s, t)- commutative diagram Os,t if
xi 6= yj for 0 < i < s, 0 < j < t.

We refer to the number s + t as the rank of Os,t. It is ≥ 3, because the
graph does not contain multiple edges.

We introduce the girth of binary relation graph Γ as the minimal rank
of its Os,t diagram with s + r ≥ 3. Notice, that the graph of binary relation of
girth t may have a directed cycle Os = Os,0: v0 → v1 → . . . vs−1 → v0, where vi,
i = 0, 1, . . . , s − 1, s ≤ t are distinct vertices.

In the case of symmetric irreflexive relations the above general definition
of the girth agrees with the standard definition of the girth of simple graph i.e
the length of its minimal cycle, For simple graphs index and girth are equal.

For the investigation of commutative diagrams we introduce girth indicator
gi, which is the minimal value for max(s, t) for parameters s, t of commutative
diagram Os,t, s + t ≥ 13. Notice, that two vertices v and u at distance < gi are
connected by unique pass from u to v of length < gi.

In case of symmetric binary relation gi = d implies that the girth of the
graph is 2d or 2d−1. it does not contain even cycle 2d−2. In general case gi = d
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implies that g ≥ d + 1. So if the case of family of graphs with unbounded girth
indicator, the girth is also is unbounded. We have also gi ≥ g/2.

We will use term the family of graphs of large girth for the family of regular
graphs Γi of degree ki and order vi such that gi(Γi) and ind(Γi) are ≥ clogki

(vi),
where c′ is the independent on i constant. So the size of such graphs is quite
close to the bound (2).

As it follows from the definition g(Γi) ≥ c′logki
(vi) for appropriate constant

c′. So, it agrees with the well known definition for simple graphs (see the
Section 2).

5. Graphs with special colouring of vertices and edges, case
of large girth. We shall use term the family of algebraic graphs for the family
of graphs Γ(K), K belongs to some infinite class F of commutative rings, such
that the neighbourhood of each vertex of Γ(K) and the vertex set itself are
quasiprojective varieties over K of dimension ≥ 1 (see [2] for the case of simple
graphs).

Such a family can be treated as special Turing machine with the internal
and external alphabet K.

We say that the graph Γ of binary relation Φ has a rainbow-like colouring
over the set of colours C if for each v, v ∈ V we have a colouring function ρv,
which is a bijection from the neighbourhood St(v) of v onto C, such that the
operator Nc(v) of taking the neighbour of v with colour c is the bijection of V
onto V .

We say that the rainbow-like colouring ρ is invertible if there is a rainbow-
like colouring of Φ−1 over C ′ such that Nc

−1 = N ′

c′ for some colour c′ ∈ C ′.

Example 1. Cayley graphs

Let G be the group and S be subset of distinct generators, then the
binary relation φ = {(g1, g2)|gi ∈ G, i = 1, 2, g1g2

−1 ∈ S: admit the rainbow-like
colouring ρ(g1, g2) = g1g2

−1

This rainbow-like colouring is invertible because the inverse graph φ−1 =
{(g2, g1)|g1g2

−1 ∈ S} admit the rainbow-like colouring ρ
′

(g2, g1) = g2g1
−1 ∈ S−1.

Example 2. Parallelotopic graphs and latin squares

Let G be the graph with the colouring µ : V (G) → C of the set of vertices
V (G) into colours from C such that the neighbourhood of each vertex looks like
rainbow, i.e., consists of |C| vertices of different colours. In case of pair (G,µ) we
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shall refer to G as parallelotopic graph with the local projection µ (see [32, 33]
and further references).

It is obvious that parallelotopic graphs are k-regular with k = |C|. If C ′

is a subset of C, then induced subgraph GC′

of G which consists of all vertices
with colours from C ′ is also a parallelotopic graph. It is clear that connected
component of the parallelotopic graph is also a parallelotopic graph.

The arc of the graph G is a sequence of vertices v1, . . . , vk such that
viIvi+1 for i = 1, . . . , k − 1 and vi 6= vi+2 for i = 1, . . . , k − 2. If v1, . . . , vk is an
arc of the parallelotopic graph (G,µ) then µ(vi) 6= µ(vi+2) for i = 1, . . . , k − 2.

For the examples see [32, 34, 35].

Let + be the latin square defined on the set of colours C. Let us assume
ρ(u, v) = µ(u) − µ(v). The operator Nc(u) of taking the neighbour of the color
is invertible, Nc

−1 = N−c, where −c is the opposite for c element in the latin
square. It means that ρ is invertible raibow-like colouring.

We shall consider some examples of graphs with parallelotopic colouring
in the Sections 8 and 9.

6. The algorithm.

6.1. General symmetric algorithm. Let us consider the encryption
algorithm corresponding to the graph Γ with the chosen invertible rainbow-like
colouring of edges.

Let ρ(u, v) be the colour of arrow u → v, C is the totality of colours and
Nc(u) is the operator of taking the neighbour of u with the colour c.

The password be the string of colours (c1, c2, . . . , cs) and the encryption
procedure is the composition Nc1 × Nc2 . . . Ncs

of bijective maps Nci
: V (Γ) →

V (Γ). So if the plaintext v ∈ V (Γ) is given, then the encryption procedure
corresponds to the following chain in the graph: x0 = v → x1 = Nc1(x0) → x2 =
Nc2(x1) → · · · → xs = Ncs

(xs−1) = u. The vertex u is the ciphertext.

Let N ′

c′(Nc(v)) = v for each v ∈ V (Γ). The decryption procedure corres-
ponds to the composition of maps N ′

c′s
, N ′

c′
s−1

, . . . , N ′

c′
1

. The above scheme gives

a symmetric encryption algorithm with flexible length of the password (key). Let
A(Γ, ρ, s) be the above encryption scheme. The following statement is immediate
corollary from definitions.

Lemma 2. Let Γ be the invertible rainbow-like graph of girth g and
A(Γ, ρ, s) be the above encryption scheme for s < (gi). Then different passwords
produce distinct ciphertexts, plaintext and corresponding ciphertext are different.
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6.2. Symbolic computation and public keys. Let K be the commu-
tative ring. Recall that graph Γ be the algebraic graph over K if the set of vertices
V (Γ) and the neighbourhood of each vertex u are algebraic quasiprojective varie-
ties over the ring K (see [2]).

In the case of symbolic invertible rainbow-like graph (Γ, ρ, ρ′), the vertex
set V (Γ) and the neighbourhoods of each vertex are open algebraic varieties
in Zarissky topology as well as the colour set C, maps N(c, v) = Nc(u) and
N ′(c, v) = N ′

c(u) are polynomial maps from C × V (Γ) onto V (Γ).

In the case of symbolic rainbow-like graph the encryption as above with
the key (t1, t2, . . . , tk) given by some polynomial map from Ck × V (Γ) → V (Γ).
We can treat ti, i = 1, . . . , k as symbolic variables.

The specializations ti = αi ∈ K gives the public key map P : V (Γ) →
V (Γ). Like in the known example of polynomial encryption proposed by Imai
and Matsumoto we can combine P with two affine transformations T1 and T2

and work with the public map Q = T1PT2.

Let us use the characters Alice and Bob from books on Cryptography
[15, 16] or [28], where Bob is public user and Alice is a key holder. So she knows
the string t1, . . . , , ts, the graph and affine transformations T1 and T2. She can
decrypt via consecutive applications of T2

−1, N ′

t′
k

, N ′

t′
k
−1, . . . N

′

t1 and T1
−1.

The public user Bob has the encryption map Q only. He can encrypt,
but the decryption is hard task because (1) Q is the polynomial map of degree
≥ 2 from many variables. (2) Even in the case when Bob knows T1, T2 and the
graph Γ. The problem of finding the pass between the plaintext vertex and the
ciphertext vertex has complexity nlnn, where n = |V (Γ)|. So Bob is not able
decrypt if the plainspace is large enough.

7. Generalised polygons and rainbow-like graphs. E. Moore
[26] used term tactical configuration of order (s, t) for biregular bipartite simple
graphs with bidegrees s + 1 and r + 1. It is an incidence stucture with the point
set P , line set L and symmetric incidence relation I. Its size can be computed
as |P |(s + 1) or |L|(t + 1).

Let F = {(p, l)|p ∈ P, l ∈ L, pIl} be the totality of flags for the incidence
structure (P,L, I). We define the following irreflexive binary relation φ on the
set F :

((l1, p1), (l2, p2)) ∈ φ if and only if p1Il2, p1 6= p2 and l1 6= l2. Let F (I)
be the binary relation graph corresponding to φ. We refer to it as directed flag
graph of I.
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Lemma 3. Let (P,L, I) be a tactical configuration of girth g ≥ 2k. Then
the girth indicator of F (I) is > k.

Parallelotopic tactical configuration (P,L, I) is an incidence structure
with colouring functions µp : P → Cp and µl : L → Cl such that for each
point p ∈ P (line l ∈ L) there is the unique neighbour nc(p) ∈ L (nc(l) ∈ P of
colour c from Cl (Cp, respectively).

Some encryption schemes connected with the parallelotopic tactical con-
figurations of high girth had been introduced in [34].

Let (P,L, I) be the parallelotopic tactical configuration with the colouring
functions µp : L → Cp and µl :→ Cl and +p, +l are latin squares on Cp and Cl,
respectively.

The directed flag graph F (I) admit the following invertible rainbow-like
colouring ρ of edges: the value of ρ(f1, f2) for f1 = (l1, p1) with µl(l1) = c1,
µp(p1) = d1 and f2 = (l2, p2) with µl(l2) = c2, µp(p2) = d2 such that f1If2 is the
pair (c2 − c1, d2 − d1) from the set of colours (Cl − {0}) × (Cl − {0}.

Generalised m-gons GPm(r, s) of order (r, s) were defined by J. Tits in
1959 (see [8, 5] and further references) as tactical configurations of order (s, t) of
girth 2m and diameter m.

According to well known Feit–Higman theorem a finite generalised m-gon
of order (s, t) has m ∈ {3, 4, 6, 8, 12} unless s = t = 1.

The known examples of generalised m-gons of bidegrees ≥ 3 and m ∈
{3, 4, 6, 8} include rank 2 incidence graphs of finite simple groups of Lie type (see
[4]). The regular incidence stuctures are for m = 3 (groups A2(q)), m = 4 (groups
B2(q)) and m = 6 (group G2(q)). In all cases s = t = q, where q is prime power.

The biregular but not regular generalised m-gons have parameters s = qα,
t = qβ, where q is a prime power. The list is below: s = q, t = q2, q is arbitrary
large prime power for m = 4; s = q2, t = q3, where q = 32k+1, k > 1 for m = 6;
s = q, t = q2, q = 22k+1 for m = 8.

Lemma 4. Let (P,L, I) be the generalised 2k-gon of order (r, s). Then

|P | =
∑

t=0,k−1

(rtst + rt+1st), |L| =
∑

t=0,k−1

(strt + st+1rs).

Lemma 5. Let (P,L, I) be regular generalised m-gon of degree q + 1.
Then |P | = |L| = 1 + q + · · · + qm−1.

Let (P,L, I) be a regular tactical configuration of order (t, t). The double
configuration I ′ is the incidence graph of the following incidence structure
(P ′, L′, I ′) : P ′ = F (I) = {(p, l)|p ∈ P, l ∈ L, pIl}, L′ = P ∪ L, f = (p, l)Ix,
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x ∈ L′ if p = x or l = x. It is clear that the order of tactical configuration I ′ is
(1, t). If (P,L, I) is a regular generalised m-gon, then (P ′, L′, I ′) is a generalised
2m-gon.

Let (P,L, I) be the generalised m-gon associated with the rank 2 finite
simple group G of Lie type. It is an edge transitive tactical configuration of order
(s, t), s > 1, t > 1.

Let B the Borel subgroup of G , Sp and Sl are largest orbits of B on P
and L, respectively. Then Schubert graph S(G) (affine part of generalised m-gon,
see [34]) is the induced graph of I on the vertex set Sp ∪ Sl.

Proposition 6. The directed flag graph of the Schubert graph S(G) or
the directed flag graph of double configuration of the regular Schubert graph admit
the symbolic rainbow-like colourings.

P r o o f. Let U be the unipotent subgroup of the standard Borel subgroup
for G, U1 and U2 are root subgroups corresponding to simple roots. The partition
sets of S(G) can be identified with the totalities of left cosets P = (U : U1) and
L = (U : U2). Two cosets from gU1 and hU2 are incident if and only if their
intersection is not the empty set. Let U ′ = [U1, U2] be the mutual commutant of
U1 and U2. Then the group U admits the factorisation U1U2U

′, i.e., each element
u in U can be presented uniquely in the form u1u2u

′, where ui ∈ Ui, i = 1, 2 and
u′ ∈ U ′. Groups U2U

′ and U1U
′ act regularly on U : U1 and U ;U2, respectively.

So we can identify the element uiu
′, i = 1, 2 with the corresponding left coset. We

can consider the parallelotopic colouring µ(uiu
′) = ui, i = 1, 2 and consider the

standard rainbow-like colouring of the directed flag graph for S(G) corresponding
to µ.

In the case of double flag graph DS(G) of regular S(G) we have isomorphic
subgroups U1 and U2. The directed flag graph F (DS(G))for DS(G) is the
bipartite graph, its partition sets can be identified with two copies Up and Ul

of group U . Let up ∈ Up and ul ∈ Ul. We have up → ul if ul = upu1 for some
element u1 ∈ U1 and ul → up if up = ulu2 for some u2 ∈ U2. Notice, that U1 is
isomorphic to U2 and u1 and u2 serve as colours for rainbow-like colouring of the
graph.

If group G defined over Fq, then the vertex set of the above graphs are
open algebraic variety over Fq and in each case the operator of taking neighbour
of chosen colour is a polynomial map over Fq. So the colourings as above are
symbolic rainbow-like colourings. �

Proposition 7. Let (P,L, I) be the finite generalised polygon associated
with the group G of Lie type of rank 2.
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(i) Then its directed flag graph admit an invertible rainbow-like colouring

(ii) If (P,LI) is a regular tactical configuration, then its directed flag
graph of the double graph admit an invertible rainbow-like colouring.

P r o o f. We can assume that P = (G : P1) and L = (G : P2), where P1

and P2 are standard maximal parabolic subgroups. Vertices l ∈ L and p ∈ P of
generalised polygon form the vertex of the directed flag graph DF (G) if cosets p
and l have non empty intersection. It is clear, that the vertices of the flag graph
can be identified with the cosets by standard Borel subgroup B = P1 ∪ P2.

Let α be the vertex, then the stabiliser Gα of α in G is isomorphic to B.
The neighbours of α form the orbit of order |U1| × |U2|. The action of unipotent
subgroup of Gα is similar to regular action of U1×U2. So we can use the elements
of this group as colours for the rainbow-like colouring. So we proved the point
(i).

If (P,L, I) be the regular tactical configuration, the directed flag of double
configurations is a bipartite graph. Its partition sets can be identified with two
copies of manifold (G : B). The unipotent subgroup of stabilizer Gα of vertex
α acts on the neighbourhood as regular action of U1 or U2. So elements of this
group can be used as colours of arrows of the directed flag graph. �

Remark 1. Directed flag graphs of generalised polygons do not admit
a symbolic rainbow-like colouring, because their vertex-sets are closed projective
varieties. So the operators of taking the neighbour along the edge of chosen colour
are not a polynomial maps.

Remark 2. The invertible rainbow-like colouring can be defined on
the directed flag graphs of any generalised polygon in terms of distance on the
graph. In particular, it can be done for any projective plane (regular generalised
triangle).

8. The incidence structures defined over commutative rings.

We define the family of graphs D(k,K), where k > 2 is positive integer and K is
a commutative ring, such graphs have been considered in [14] for the case K = Fq

(some examples are in [17]).

Let P and L be two copies of Cartesian power KN , where K is the
commutative ring and N is the set of positive integer numbers. Elements of P
will be called points and those of L lines.

To distinguish points from lines we use parentheses and brackets: If x ∈ V ,
then (x) ∈ P and [x] ∈ L. It will also be advantageous to adopt the notation



146 V. A. Ustimenko

for co-ordinates of points and lines introduced in [18] for the case of general
commutative ring K:

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′

2,2, p2,3, . . . , pi,i, p
′

i,i, pi,i+1, pi+1,i, . . .),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l
′

2,2, l2,3, . . . , li,i, l
′

i,i, li,i+1, li+1,i, . . .].

The elements of P and L can be thought as infinite ordered tuples of
elements from K, such that only finite number of components are different from
zero.

We now define an incidence structure (P,L, I) as follows. We say the
point (p) is incident with the line [l], and we write (p)I[l], if the following relations
between their co-ordinates hold:

li,i − pi,i = l1,0pi−1,i

(1) l′i,i − p′i,i = li,i−1p0,1

li,i+1 − pi,i+1 = li,ip0,1

li+1,i − pi+1,i = l1,0p
′

i,i

(This four relations are defined for i ≥ 1, p′

1,1 = p1,1, l′1,1 = l1,1). This incidence

structure (P,L, I) we denote as D(K). We identify it with the bipartite incidence
graph of (P,L, I), which has the vertex set P ∪ L and edge set consisting of all
pairs {(p), [l]} for which (p)I[l].

For each positive integer k ≥ 2 we obtain an incidence structure (Pk, Lk, Ik)
as follows. First, Pk and Lk are obtained from P and L, respectively, by simply
projecting each vector onto its k initial coordinates with respect to the above
order. The incidence Ik is then defined by imposing the first k−1 incidence
equations and ignoring all others. The incidence graph corresponding to the
structure (Pk, Lk, Ik) is denoted by D(k,K).

To facilitate notation in future results, it will be convenient for us to
define p−1,0 = l0,−1 = p1,0 = l0,1 = 0, p0,0 = l0,0 = −1, p′0,0 = l′0,0 = −1, and to
assume that (6) are defined for i ≥ 0.

Notice that for i = 0, the four conditions (1) are satisfied by every point
and line, and, for i = 1, the first two equations coincide and give l1,1 − p1,1 =
l1,0p0,1.

The incidence relation motivated by the linear interpretation of Lie geo-
metries in terms their Lie algebras [31] (see [33]). Let us define the “root



On graph-based cryptography and symbolic computations 147

subgroups” Uα, where the “root” α belongs to the root system Root = {(1, 0),
(0, 1), (1, 1), (1, 2), (2, 1), (2, 2), (2, 2)′ . . . , (i, i), (i, i)′ , (i, i + 1), (i + 1, i) . . . }. The
“root system above” contains all real and imaginary roots of the Kac-Moody Lie
Algebra Ã1 with the symmetric Cartan matrix. We just doubling imaginary roots
(i, i) by introducing (i, i)′.

Remark. For K = Fq the following statement had been formulated in
[20].

Let k ≥ 6, t = [(k+2)/4], and let u = (uα, u11, . . ., utt, u
′

tt, ut,t+1, ut+1,t, . . .)
be a vertex of D(k,K) (α ∈ {(1, 0), (0, 1)}, it does not matter whether u is a point
or a line). For every r, 2 ≤ r ≤ t, let

ar = ar(u) =
∑

i=0,r

(uiiu
′

r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, · · · , at).

Proposition 8. (i) The classes of equivalence relation τ = {(u, v)|a(u) =
a(v)} are connected components of graph D(n,K), where n ≥ 2 and K be the ring
with unity of odd characteristic.

(ii) For any t− 1 ring elements xi ∈ K), 2 ≤ t ≥ [(k + 2)/4], there exists
a vertex v of D(k,K) for which

a(v) = (x2, . . . , xt) = (x).

(3i) The equivalence class C for the equivalence relation τ on the set
Kn∪Kn is isomorphic to the affine variety K t∪Kt , t = [4/3n]+1 for n = 0, 2, 3
mod 4, t = [4/3n] + 2 for n = 1 mod 4.

Remark. Let K be the general commutative ring and C be the
equivalence class on τ on the vertex set D(K) (D(n,K), then the induced subgraph,
with the vertex set C is the union of several connected components of D(K)
(D(n,K)).

Without loss of generality we may assume that for the vertex v of C(n,K)
satisfying a2(v) = 0, . . . at(v) = 0. We can find the values of components v ′

i,i) from
this system of equations and eliminate them. Thus we can identify P and L with
elements of K t, where t = [3/4n] + 1 for n = 0, 2, 3 mod 4, and t = [3/4n] + 2 for
n = 1 mod 4.

We shall use notation C(t,K) (C(K)) for the induced subgraph of D(n,K)
with the vertex set C.

Remark. If K = Fq, q is odd, then the graph C(t, k) coincides with
the connected component CD(n, q) of the graph D(n, q) (see [17]), graph C(Fq)
is a q-regular tree. In other cases the question on the connectivity of C(t,K) is
open. It is clear that g(C(t, Fq)) is ≥ 2[2t/3] + 4.
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Proposition 9. Projective limit of graphs D(n,K) (graphs C(t,K),
CD(n,K) ) with respect to standard morphisms of D(n + 1,K) onto D(n,K)
(their restrictions on induced subgraphs) equals to D(K) (C(K).

If K is an integrity domain, then D(K) and CD(K) are forests. Let C
be the connected component, i.e tree.

It is well known that a continuous bijection of the interval [a, b] has a
fixed point. In case of open variety Kn, where K is commutative ring situation is
different. For each pair (K,n), n ≥ 3 and each t ∈ K − {0} we shall construct a
linguistic dynamical system, i.e family F = Fn(K) = {ft} of invertible nonlinear
polynomial maps ft : Kn → Kn without fixed points (ft(x) 6= x for each x ∈ Kn),
such that ft

−1 = f−t and t1 6= t2 implies ft1(x) 6= ft2(x) for each x.

For each sting a = (a1, . . . as) we consider the composition Ga = fa1
×

fa2
× . . . fas

of transformations fai
, i = 1, . . . , s.

We shall refer to a string a = (a1, . . . , as) with regular elements (not zero
divisors) ai + ai+1, i = 1, . . . , s− 1 as regular string of length s. Let Rs = Rs(K)
be the totality of all regular string of length s.

The rank r = r(F ), r ≥ 1 of linguistic dynamical system F is the maximal
number s such that for each a ∈ Rs the condition Ga(x) = Gb(x), b ∈ K − {0}l,
l ≤ s implies a = b. Let us consider simple graph Γ = Γ(F ) of the dynamical
system F with the vertex set V = Kn such that u ∈ V and v ∈ V are connected
by edge if and only ft(u) = v for some t ∈ K.

The property r(F ) ≥ s means that for each vertex x and a ∈ Rs vertices
x and Ga(x) are connected by the unique pass of length ≤ s.

Recall that the girth g = g(Γ) of the simple graph Γ is the length of its
smallest cycle.

Property r(F ) ≥ s implies that in case of integral domain K the girth g
of the graph Γ(F ) is > 2s.

In [41] the family of dynamical systems Ln(K), n 6= 0(mod) 3 is even
number ≥ 2 of rank r ≥ 1/3n had been constructed explicitly.

We consider the definition of arithmetical dynamical system F = {fα|α ∈
Q} simply via consideration of quasiprojective manyfold M of Kn instead of Kn

and requirement fα−1 ∈ F instead of fα
−1 = f−α, Q is just a subset of K. Major

justification of arithmetical graphs related to such dynamical systems is that they
are examples of graphs with memory, because we can not only consider such a
graph as finite automaton where states v and fα(v) are connected by the arrow
with the label α, but each state v is a string of characters from the alphabet K.

Theorem 10. Let Nx(v) be the operator of taking the neighbour of the
vertex v = (v1, v2, . . . , vs) of the colour v1 + x in the graph D(n,K).
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Then this operator defines an arithmetical dynamic system Dn(K) on
Kn ∪ Kn of rank d = [(n + 5)/2] − 1.

Operator Nx preserves connected components of D(n,K) and blocks of
equivalence relation τ .

Corollary 11. Let N ′

x(v), t ∈ K be the operator of taking the neighbour
of the vertex v of the colour v1 + x in the parallelotopic graph C(t,K), which
is the restriction of operator Nx(v) on the equivalence class C. Then it defines
arithmetical dynamic system Ct(K) on K t∪Kt over Q = K of rank d = [2/3t]+1.

Let us consider the directed flag graph F (t,K) of the tactical configuration
C(t,K). We can consider the symbolic invertible rainbow-like colouring ρ(f1, f2)
of F (t,K) defined on the colour set K∗ × K∗ by the following rule:

Let f1 = ([l1], (p1)), f2 = ([l2], (p2)) form the arrow in F (t,K). So,
[l2]I(p1). We assume that ρ(f1, f2) = (l11,0 − l21,0, p

1
0,1 − l20,1).

If K is finite, then the cardinality of the colour set is (|K| − 1)2. Let
RegKbe the totality of regular elements, i.e., not zero divisors. Let us delete
all arrows with colour (x, y), where one of the elements x and y is not a zero
divisor. New graph RF (t,K) is a symbolic rainbow-like graph over the set of
colours (RegK)2

The following statement follows immediately from the above corollary.

Theorem 12. The girth indicator gi of the symbolic rainbow-like graph
RF (t,K) is ≥ 2/3t.

P r o o f. Let Nα(v) be the operator of taking the neighbour of vertex v
with the colour µ(v) + α. Let α1, α2, . . . , αd, d = 2s + 1 be regular string of
arithmetical dynamical system related to the graph of odd length. Let [x] be
the line in the graph C(t,K). Then [x], Nα1

(x) be the vertex f1 of the directed
flag graph for C(t,K). We can obtain each vertex of F (t,K) (or RF (t,K)) by
appropriate choice of [x] and α1. Elements of kind (u = Nα2i

(. . . Nα2
)(Nα1

([x]),
Nα2i+1

(u)), 1 ≤ i ≤ s form the pass in the graph RF (t,K), because the rainbow-
like colours of the edges between each two consecutive flags are the regular
elements. We can obtain any pass of RF (K) by appropriate choice of starting
line [x] and regular string. The existence of Os,k commutative diagram, s ≥ k
means that for two different regular strings (α1, . . . , α2s+1) and β1, . . . β2k+1 the
images of [x] under compositiona of Nα1

, . . . Nα2s
and Nβ1

. . . Nβ2k
are same. If

2s is than the rank d of dynamical system it is impossible. So 2s ≥ d the girth
indicator gi of dynamical system is ≥ 1/3t. �

Corollary 13. Let K be a finite such that k = |RegK| ≥ 2. Then graphs



150 V. A. Ustimenko

RF (t,K), t = 1, 2, . . . form the family of symbolic rainbow-like graphs of large
girth of bounded degree.

In [36] the reader can find the implementation of the algorithm of Section 3
for the case of family RF (n, Fq) on the base of “Mathematika” package. The
generalisation of this algorithm the reader can find in [43].

Remark 1. The plainspace (or cipherspace) for graph based encryption
corresponding to each graph in this section (or its connected component) has
structure of free module V = K l over the commutative ring K. The affine
transformation x → Ax+b, where x is the column tuple from V , A is an invertible
matrix and b is a fixed tuple, is sparse if the time of its execution is bounded by
independent on size of the plainspace and keyspace constant. Let e be encryption
transformation. If we apply e′ = τ−1eτ (composition of τ−1, e and τ , where τ
is sparse affine transformation), then it is still fast, ciphertext is different from
the plaintext, because of e and e′ are conjugate permutations on the plainspace.
case Notice, that e′ can be given by effective explicit formula for computation
(via maps of kind τ−1Nατ). In fact e′ has better security because the original
family of graphs is hidden.

Remark 2. Let us consider the family of graphs CD(n, q), where n
is growing but odd q is fixed. Points and lines of the graph are tuples over Fq.
The operator of “deleting” the last component of the tuple is colour preserving
graph homomorphism from CD(n, q) onto CD(n − 1, q). So we have a folder
of parallelotopic graphs in sense of [34] and projective limit of CD(n, q) is well
defined. Graphs (CD(n, q) are connected. It insure the following property of
Turing encryption machine related to this family of graphs: Let T be the pert
of the plaintext at the beginning (with respect to natural order of components)
and T ′ be arbitrarily chosen text. If we consider the algorithm working with
“potentially infinite” plaintext and password, then there is the password such
that T will be transformed into T ′.

This magic password is hard to find: one can think that say T is first unit
of Koblitcz book [15] and T ′ is translation of T in Spanish (assume that and size
of T and T ′ are the same, English and Spanish use the same Latin alphabet). So
in this case the password will do translator’s job.

This theoretical property demonstrate good mixing properties of related
encryption. Notice that each block cipher (like DES, AES etc) is principally
different from our graph based encryption. If we consider the text which is
constant on each block, then the ciphertext will be also periodical on blocks.

By the modulo of conjecture on small world properties of the family (in
case of bounded degree) the length of the magic password will be O(l) where l is
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the length of the text T .

Remark 3. Remark 2 is applicable to each family F of connected
components for every family of bounded degree from this section.

Remark 4. Family F as above defines stream cipher, in fact, the
component yi of the ciphertext depends only from the first i components. The
implementations show that change of one character from the password leads to
the change of more than 99 percents of ciphertext’s characters. The change of
i-th character of the plaintext tuple lead to change of more than 99 percent of
ciphertext’s components on the position j, j ≥ i. This mixing properties are
much better in comparison with the case of stream cipher RC4. Conjugation of
graph based encryption with special sparse affine transformation τ allows get the
encryption rule which will change 99 percent of the entire text with the change
of one character from the plaintext.

Remark 5. The speed of graph based algorithms based on family F
compares well with the speed of very fast but not very secure stream cipher
RC4. The tables of GRAPHICAL APPENDIX reflect execution time evaluation
of 4 algorithms: RC4, GE1 (based on graphs CD(n, 256), see [30]) and GE2
(based on RF (t, Z232). Size of the key is given in bites (40, 48, . . . ), the size of
the plaintext is given in MB’s (7.6 and 55 MB’s are chosen). All computations
are conducted on the same computer (by an Intel Pentium 1.6 GHz processors
workstation, ORACLE 9i DBMS Server), PL/SQL programming language has
been used. Experiment demonstrates that such graph based encryption can be
used for the encryption of large data (Geological Information Systems, other
Oracle based data bases).

In [12] graphs CD(n, 127) had been used, the execution with key-size 48
of graph based algorithm were 20 time slower than RC4.

At the beginning of the GRAPHICAL APPENDIX the graph CD(3, 3)
is depicted (graphs CD(n, 256) are too dense for drawing).

9. Conclusion. We can see that both known families of simple graphs
of large girth of bounded but arbitrary large degree admit the rainbow-like
colouring of edges: Xp,q defined by G. Margulis are Cayley graphs, graphs
CD(n, q) are parallelotopic graphs. Notice, that in the case of CD(n, q) and their
modifications(graphs defined in [35] and generalisetions (directed graphs RFn(K)
we have the algebraic graphs such that the operator of taking the neighbour of
vertex along the edge of chosen colour is a bijective polynomial map on the vertex
set. So, we have cases of symbolic rainbow-like graphs. It means that the general
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symmetric algorithm and the public-key algorithm as above can be implemented
at the level of symbolic computations. We can use such an implementation on
the mode of stream-ciphers.

Let us discuss the case of families of unbounded degree but bounded girth.
We can see that directed graph of generalised polygon (or its affine part) over the
finite field Fpm admit the rainbow-like colouring of edges. We can treat the finite
field Fpm as a vector space over the prime field Fp. We can keep the parameter
p fixed and work with unbounded m. Formally this way gives us the Turing
machine for the encryption of “potentially infinite” text.

The generalised polygon and its affine part both are algebraic graphs, but
there is an essential difference between them: the affine part admit the symbolic
rainbow-like colouring, but the generalised polygon itself is not.

We can use affine parts of generalised polygons for the symmetric or
public-key encryption processes, but not the generalised polygons. Notice if m
is growing then the task of the construction of irreducible over Fp polynomial is
getting harder. So we stop our computation at some large m. So we can use
graph based encryption of generalised polygons (or their affine parts) as block
ciphers but not a stream ciphers.
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