
Serdica J. Computing 1 (2007), 115–130

WHAT IS Q-EXTENSION?

Iliya G. Bouyukliev

Abstract. In this paper we present a developed software in the area of
Coding Theory. Using it, codes with given properties can be classified.
A part of this software can be used also for investigations (isomorphisms,
automorphism groups) of other discrete structures—combinatorial designs,
Hadamard matrices, bipartite graphs etc.

1. Introduction. We presented three programs (q ext# l.exe,
q ext# d.exe for # = 2, 3, 4 and q ext tools.exe) in the area of Coding Theory
which can be started and can work independently. Using them, codes with given
properties can be classified. One of these programs (q ext tools.exe) can be used
also for investigations (isomorphisms, automorphism groups) of other discrete
structures—combinatorial designs, Hadamard matrices, bipartite graphs etc. To
use these programs, knowledge of a programming language is not needed. This
program is available in http://www.moi.math.bas.bg/~iliya/Q_ext.htm.
Other software in this direction can be found in
– http://cadigweb.ew.usna.edu/~wdj/gap/GUAVA/

– http://www.math.unl.edu/~djaffe/

– http://magma.maths.usyd.edu.au/magma/

– http://www.cs.sunysb.edu/algorith/implement/nauty/implement.shtml.

ACM Computing Classification System (1998): D.0.
Key words: Classification of codes, Software, Algorithm, Isomorphism Test.

116 Iliya G. Bouyukliev

2. What can you do with Q-Extension? You can classify all
linear codes with given parameters over finite fields with 2, 3 and 4 elements.
You can construct some or all codes with a given length and/or dual distance
and/or orthogonality conditions.

If you have got generator matrices of codes with length n, dimension k,
and minimum distance ≥ d, you can find:

– all [n + n1, k, d + d′] codes for n1 = 1, 2, . . . (q ext l.exe);

– all [n + n1, k + 1, d′] codes for which the [n, k, d] codes are residual
(q ext l.exe);

– all [n + n1, k + 1, d] codes for which the [n, k, d] codes are subcodes
(q ext d.exe).

With the additional program q ext tools.exe you can find:

– the nonequivalent between many linear codes over small finite fields;

– the orders of their automorphism groups and the orbits;

– the nonequivalent between many binary matrices, which cover the simi-
lar problems for combinatorial designs, Hadamard matrices, bipartite graphs;

– weight characteristics of linear codes in a large set and some subsets
connected with these characteristics;

– systematic form, parity-check matrix and other trivial matters.

For examples look at Section 8.

3. Basic definitions. We consider two types of objects: linear codes
and binary matrices. In this section we present some definitions following [8].

Let F
n
q denote the vector space of n-tuples over the q-element field Fq.

A q-ary linear code C of length n and dimension k, or an [n, k]q code, is a k-
dimensional subspace of F

n
q . An inner product (x,y) of vectors x,y ∈ F

n
q defines

orthogonality: Two vectors are said to be orthogonal if their inner product is
0. The set of all vectors of F

n
q orthogonal to all codewords from C is called the

orthogonal code C⊥ to C:

C⊥ = {x ∈ F
n
q | (x,y) = 0 for any y ∈ C}.

It is well-known that the code C⊥ is a linear [n, n − k]q code.

A k × n matrix GC whose rows form a basis of C is called a generator
matrix of C. A generator matrix of the code C⊥, orthogonal to C, is a parity
check matrix for C, denoted by HC .

The number of nonzero coordinates of a vector x ∈ F
n
q is called its

Hamming weight wt(x). The Hamming distance d(x,y) between two vectors

What is Q-Extension? 117

x,y ∈ F
n
q is defined by

d(x,y) = wt(x − y).

The minimum distance of a linear code C is

d(C) = min{d(x,y) | x,y ∈ C,x 6= y} = min{wt(c) | c ∈ C, c 6= 0}.

A q-ary linear code of length n, dimension k and minimum distance d is said to
be an [n, k, d]q code.

Let Ai denote the number of codewords in C of weight i. Then the n+1-
tuple (A0, . . . , An) is called the weight spectrum of the code C.

If C ⊆ C⊥, the code C is called self-orthogonal. Self-orthogonal codes
with n = 2k are of particular interest; then C = C⊥ and these codes are called
self-dual.

The Euclidean inner product of two vectors u = (u1, u2, . . . , un) and v =
(v1, v2, . . . , vn) from F

n
q is defined by

(u,v)E = u1v1 + u2v2 + · · · + unvn.

For codes over Fq where q is an even power of an arbitrary prime p, one
can consider another type of inner product, the Hermitian inner product. The
Hermitian inner product of two vectors u = (u1, u2, . . . , un) and v = (v1, v2, . . . ,
vn) from F

n
q is defined by

(u,v)H = u1v̄1 + u2v̄2 + · · · + unv̄n,

where v̄i = v
√

q

i for vi ∈ Fq. Consequently, for q = 4 the Hermitian inner product
is defined by

(u,v)H = u1v
2

1 + u2v
2

2 + · · · + unv2

n.

In the ternary case we consider the Euclidean inner product and in the
quaternary case (like in most other studies) the Hermitian inner product.
Throughout the paper, these inner products are assumed in the discussion of
self-dual and self-orthogonal codes.

Two linear q-ary codes, C1 and C2, are said to be equivalent if the
codewords of C2 can be obtained from the codewords of C1 via a sequence of
transformations of the following types:

1. permutation of coordinates;

2. multiplication of the elements in a given coordinate by a nonzero element
of Fq;

118 Iliya G. Bouyukliev

3. application of a field automorphism to the elements in all coordinates
simultaneously.

The field F3 does not have nontrivial automorphisms, and the only nontri-
vial automorphism of F4 is conjugation. An automorphism of a linear code C is a
sequence of such transformations that maps each codeword of C onto a codeword
of C. The automorphisms of a code C form a group, called the automorphism
group of the code and denoted by Aut(C).

Define the following basic problem in coding theory. For a given set of
parameters n, k, d and q find generator matrices of all nonequivalent q-ary [n, k, d]
codes. Precise discussion in this topic can be found in [10]. This problem has two
main subproblems. First of them is to construct all codes with such parameters
and second one is the equivalence test. Practically, we reduce the code equivalence
test to the problem for isomorphism of binary matrices.

Two binary matrices of the same size are equivalent if the rows of the
second one can be obtained from the rows of the first one with a permutation of
the columns. Any permutation of the columns of the matrix A which maps the
rows of A into rows of the same matrix, is called an automorphism of A. The
set of all automorphisms of A is a subgroup of the symmetric group Sn and we
denote it by Aut(A).

The equivalence test for binary matrices is connected with the graph
isomorphism problem. There are several reasons to say that. First of all, any
binary matrix can be considered as a bipartite graph. In the case of bipartite
graph, the set of vertices is decomposed into two disjoint colored sets (columns
and rows) such that no two graph vertices within the same set are adjacent. This
is why solving the isomorphism problems for bipartite graphs and binary matrices
is the same.

In other hand, any graph can be made bipartite by replacing each edge
by two edges connected with a new vertex. And any two graphs are isomorphic
if and only if the transformed bipartite graphs are.

4. How can you use these programs for code classification?

In this Section we will show how you can use these programs and especially one
of them (q ext2 l.exe) to extend a code up to length with one example. Let us
consider the binary codes with parameters [47,7,22]. It is known that there exists
a unique code C47 with these parameters. How to prove this by Q-Extension.

For these codes we know that they have codewords of weight 22. Without
loss of generality, we can take the first row g1 of the generator matrix G to be

What is Q-Extension? 119

such a codeword. Up to equivalence, g1 = (11 . . . 1100 . . . 00). The last 25 columns
of G generate a linear code called a residual code Res(C, g1) of C with respect
to g1. For its minimum distance we have the following Lemma [6].

Lemma 1. Suppose C is an [n, k, d]q code and suppose c ∈ C has weight

w, where d > w(q − 1)/q. Then Res(C, c) is an [n − w, k − 1, d′]q code with

d′ ≥ d − w + dw/qe.

We define a residual code in general in the following way:

Let G be a generator matrix of a linear [n, k, d]q code C. Then the residual

code Res(C, c) of C with respect to a codeword c is the code generated by the
restriction of G to the columns where c has a zero entry.

It is clear that the last 25 coordinates of G have to generate [25, 6,≥ 11]
code. We see in Table [5] that [25,6,12] codes do not exist. If we know all [25,6,11]
codes given by their generator matrices, we know the first row and the last 25
columns of a generator matrix of any [47,7,22] code. The program Q ext l has to
take care about the first 22 columns of G.

Similarly, we can consider a generator matrix of the [25,6,11] code parti-
tioned in two parts such that the second one is a generator matrix of a [14,5,6]
code according to Lemma 1. These codes are also optimal, since [14,5,7] codes
do not exist.

To construct all codes with such relatively small parameters, we can use
the property that every code is equivalent to a code with a generator matrix in
the form (A|Ik) where Ik is the identity matrix of order k. We call this form
systematic. The last k columns generate the trivial [k,k,1] code. We can also fix
the first row, as every linear code is equivalent to a code with a generator matrix
in which the first row has weight d.

How to use the program to construct all [47,7,22] codes. After starting,
Q ext l gives us the following possibilities:

Q-Extension ver 0.1 {Length}

Linear [n,k,d] Codes over GF(2); n<128 k<20

Extension:

(1) [3,3,1] to [6,3,2]

1. Start

2. Restrictions on weights

3. Column multiplicity restrictions

4. Change inp --> outp

120 Iliya G. Bouyukliev

2 5. Dual distance

o 6. Form of the output matrices (c-convenient for extension,

o-ordinary)

n 7. Self-orthogonal

8. Number of ones adding in first row (Now :1)

9. Show input

10. Show output

11. Start with all even weights: 1 to 5

12. Restrictions on even weights

n 13. Self-complementary

14. Help

15. About Q-Extension

16. Exit

Choose:_

The codes with parameters [n, k = n, 1] are trivial and they are integrated
in the program. As a default, the program works with the parameters [3, 3, 1]
for the input code and [6, 3, 2] for the output codes. If we choose point 1 (type 1
and press enter) we start the program. It will find all nonequivalent [6,3,2] codes
with generator matrices:





100100
111010
010001









100100
111010
100001









100100
111010
011001









100100
110010
001001









100100
110010
101001









100100
011010
100001









100100
010010
001001





The program writes these matrices in a file with the name 6 3 2.2. This
file could be used as input for another extension of the codes with parameters
[6, 3, 2]. If the parameters of the input codes are not [n, k 6= n, 1] the program
takes them from a file with the name n k d.q.

We can ask for some restrictions on the code parameters. If you want to
construct codes with given weights, you have to choose 2. After that you have to
verify or exclude any of the weights. With 4 you can change the parameters of
the input and output codes. For an input code you have to use the trivial code
or already classified codes. The output code must have the same dimension as
the input code, or the parameters of the input code have to be parameters of a
residual of the output code. Point 5 is for the dual distance. We should mention

What is Q-Extension? 121

that if the code C has dual distance d⊥ its residual code has the same or bigger
dual distance (if its dimension is k−1). When you want to classify self-orthogonal
codes, use 7, and for self-complementary codes use 13. If you want to find all
[n, k,≥ d] codes using input codes with the same dimension, use 8.

In our example, to classify all [14,5,6] codes we choose 4 (type 4 and press
enter). The input code has parameters [5,5,1]. The program asks: Input codes

n,k,d: . Then type ‘5 5 1’ and press enter. The output codes have parameters
[14,5,6]. After entering the parameters of the input code the program asks in a
similar way for the parameters of the output codes. While working, the program
writes on the screen information for the tree of the back-track search. In the
example it looks like that:

1- 1 0-s 1

1- 1 0-s 0 7

1- 1 0-s 0 6 9

1- 1 0-s 0 6 8 9

1- 1 5-s 0 6 8 8

1- 1 5-s 0 6 8 7

1- 1 5-s 0 6 8 6

1- 1 5-s 0 6 8 5

1- 1 5-s 0 6 8 4

1- 1 5-s 0 6 8 3

1- 1 5-s 0 6 8 2

1- 1 5-s 0 6 8 1

1- 1 5-s 0 6 8

1- 1 5-s 0 6 7 4

1- 1 5-s 0 6 7 3

1- 1 5-s 0 6 7 2

1- 1 5-s 0 6 7 1

1- 1 5-s 0 6 7

1- 1 5-s 0 6 6 3

1- 1 6-s 0 6 6 2

1- 1 6-s 0 6 6 1

1- 1 6-s 0 6 6

1- 1 6-s 0 6 5 7

1- 1 6-s 0 6 5 6

1- 1 6-s 0 6 5 5

......

In the first column we have the number of the codes for extension, in

122 Iliya G. Bouyukliev

the second which code is being extended at the moment, in the third how
many nonequivalent codes are constructed until now. After that the number
of nonequivalent codes in dimension 2, 3, etc. which we obtain in the extension,
follows.

After a few seconds you can see the generator matrices of the constructed
codes with parameters [14,5,6] in a separate window using 10. After closing that
window, you can continue with the extension of the codes with parameters [14,5,6]
to codes with parameters [22,6,11] using 4. Such an extension we will denote in
the following way: [14, 5, 6] − l− > [22, 6, 11].

In the last step of the extension [22, 6, 11] − l− > [47, 7, 22] we construct
the only up to equivalence [47,7,22] code. The generator matrix of this code has
following form





















11111111111111111111110000000000000000000000000
11111111111000000000001111111111100000000000000
11111000000111111000001111100000011111000010000
10000100000111000110001100011100011111111101000
11000011100110100101101010010011011100110000100
10100010011100110011001011001110011010101000010
11010001010101011000101000111011000110101100001





















Such kind of extension we call extension up to length.
Sometimes it is easier to use the codes with parameters [n, k, d] to const-

ruct and classify codes with parameters [n + 1, k + 1, d]. We use the fact that
any [n + 1, k + 1, d] code contains [n, k, d] and [n + 1, k, d] subcodes. If the code
has dual distance 2, it contains [n− 1, k, d] subcode and also [n− i, k, d] subcode
for i = 1, 2, . . . , t where t is the maximum number of proportional columns in the
code. We call this extension up to dimension. For it we use the program q ext d.

We denote this type of extension by [45, 6, 22]−d− > [47, 7, 22] (extension
up to dimension). The results, obtained for the output codes in q ext d, can be
used as input for q ext l and the opposite.

Now we will list some comments and options related to the programs for
extension:

• First and second row of the main menu shows that the started program is
about extension by length of binary codes with maximum length 128 and
dimension 20.

• The number of the input codes and their parameters and the parameters
of output codes are written in the 4-th row. After starting the program we

What is Q-Extension? 123

always have “(1) [3,3,1] to [6,3,2]”. The parameters of input and output
codes can be changed using point 4 from the main menu. The number of
the input codes is 1 if the code parameters are [k,k,1] or it is the number
of the matrices in the input file ninp kinp dinp.q

• With points 2,3 and 7 additional restrictions on the codes which we try to
classify can be done. Some of these restrictions are very important for the
efficiency of the algorithms and the calculational time.

• In the case of binary codes with dual distance greater than 2 we know
that there are no proportional (repeated) columns in a generator matrix.
Moreover, any subcode with dimension k − 1 has at most 2 proportional
columns, etc. We can add this type of information using point 3.

• If the input and output codes have the same dimension we can use point 8
“to say” to program the number of ones which we add in the first row of
the generator matrix.

• The program visualizes in a simple way what is done in the different points
of the menu:
– Default dual distance is written before ‘5’ in point 5.
– There are two types of output matrices: ordinary and convenient for
extension (see [4]). That is why the program types ‘o’ or ‘c’ before point 6.
– There are two options for self-orthogonally—y(yes) or n(no). The program
types this before point 7.

5. About data organization. These programs use and create usual
text files, in which generator matrices of the considered codes in a given format
are written, and also some additional information for how the program has been
started. The file’s names are connected with the code parameters. For example
generator matrices of the codes with parameters [22, 6, 11]2 are in a file named
“22 6 11.2”. This file can be opened, explored and changed with any text editor.
There is a row above every matrix with the code parameters – dimension, length,
number of the elements of the field, name (identificator). This row begins with
the character ‘?’. We have the opportunity to write some additional information
in the file, like weight enumerators, orders of the automorphism groups, the
parameters of the input codes etc. The dimension, the length, and the number of
the elements of the fields are written after ‘?’. These data are obligatory. After

124 Iliya G. Bouyukliev

them in the same row a name-identificator can be written. When the program
reads the special (for us) character ‘?’ it expects a generator matrix from the next
row. If ‘?’ is missing the program consider the following matrix as a comment.
This special row is followed by the rows of a generator matrix. Every vector is
in a different row and its elements are not separated by any symbol. So we have
the following type of data:

?3 6 2 Name1
100100
111010
010001

?4 7 2 Name2
1001001
1110101
0100010
0101100
. . .

If you use the programs q ext# l.exe, q ext# d.exe for # = 2, 3, 4, it
is not necessary to know the data organization. Suppose that you want to find
all inequivalent codes with parameters nout,kout and dout which contain some
of the codes C1, C2, . . . , Cj with parameters ninp, kinp and dinp as subcodes (or
residual codes). In this case you have to put the generator matrices of the codes
C1, C2, . . . , Cj in the given above form in a text file with name ninp kinp dinp.q.
For example, if you extend [5, 5, 1] − l− > [14, 5, 6] the program will create a file
with name 14 5 6.2 and will write in it the generator matrices of all [14, 5, 6]2 .
If you want to extend only some of the codes with parameters [14, 5, 6]2 the
generator matrices of these codes have to be written in the file with the same
name 14 5 6.2. Obviously, any input file for the program for extension has to
consists only of matrices with the same parameters.

There are no restriction for the input file name for the programQ ext tools.
This input file can contain matrices with different parameters. If you want to
investigate binary matrices (not linear codes) the row with parameters has to
contain ‘?’, the number of rows, the number of the columns of the matrix, and
‘2’ in the end (as a generator matrix of binary linear codes).

6. About the algorithms. In the considered programs we use many
different algorithms. The most important of them are connected with two main

What is Q-Extension? 125

directions: constructing generator matrices of the output codes, and a test for
equivalence in any step in the construction. The basic ideas are described in [4].
Our aim is to construct as small number of generator matrices as possible. We
use such a form of the generator matrices in which there is a fixed part common
for all codes with these parameters. For example, we can consider matrices in
systematic form and the first row to be a codeword with minimum weight. So at
least n − k unknown columns remain. Our approach is a nontrivial back-track
search close to the dynamic programming. To restrict the search tree we cut
some parts using isomorphisms up to extension.

The isomorphism test in the current version is different from the previous
versions of the program. It is based on the idea of canonical representation of an
invariant set of codewords. For details see [2] and [9].

The main advantage of the canonical representation is that the equiva-
lence (isomorphism) test is reduced to check of coincidence of the canonical
representations of the structures. In the case of many nonequivalent codes the
computational time for comparing is growing fast. A technic for surmounting
this problem is worked out. We split the set of nonequivalent codes into a big
amount of cells according to a proper invariant. To implement this algorithm, we
use many other algorithms as: Counting the weight enumerator of a linear code,
finding the set of codewords with a given weight, counting the rank of a matrix,
etc. An estimate of the efficiency of some of these algorithms is presented in [1].
The algorithm in fact is an exhaustive search. The number of the solutions even
in special cases grows exponentially. That’s why we do not discuss the efficiency
here.

The generating of an invariant set of codewords is connected with the
computation of the weight spectrum or the codewords with a given weight.
Unfortunately, computing the weight enumerator of a code becomes computatio-
nally intractable when its size grows, from [12] it is in fact NP-hard (see also [1]).
Computational difficulty of the problem of code equivalence have been discussed
by Petrank and Roth [11].

Algorithms for code equivalence and for computing the codewords with a
given weight, implemented in the package are presented in [2] and [3].

7. About q ext tools. This is the third program in the package. It
consists of different algorithms from the first two programs. To facilitate the
interface and its use the procedures are separated in a few modules. The data
organization (input and output) is universal for all procedures. The input data
are taken from a text file, and the results are written in another text file. You

126 Iliya G. Bouyukliev

can point the names of the input and output files. The files with the results from
the first two programs can be used as input files in this program, too. When you
start the program, you see the following:

Q-Extension TOOLS ver 0.1

1. Weight

2. Utilities

3. Isomorphism and automorphism group

4. Covering radius

5. Change the infilename : "Data_file"

6. Change the outfilename : "Res_file"

7. Show infile "Data_file"

8. Show outfile "Res_file"

9. About q_ext_tools

10. Help

11. Exit

Choose:_

Let us choose 1 (Type 1 end press enter). Then you see the following
possibilities:

Q-Extension TOOLS -weights

Data_file --> Res_file

1. Find spectrum of the linear codes

2. Find the number of codewords with minimum distance

3. Find the linear codes with minimum distance >= w

4. Find the linear codes with fixed number of codewords

with weight w

5. Find the linear codes with dual distance >= w

6. Change the infilename : "Data_file"

7. Change the outfilename : "Res_file"

8. Show infile "Data_file"

9. Show outfile "Res_file"

10. Main menu

Choose:_

What is Q-Extension? 127

In the first four points the program reads the next matrix from the input
file, counts the corresponding parameter and if it satisfies the conditions writes it
and the matrix in the output file. In the end it writes summarized information in
the output file. For example for 1 it writes after any generator matrix the weight
spectrum of the corresponding code. In the end, in the output file the program
writes the number of all codes and a list of all different spectrums.

If the point 3 in main menu is chosen, it is written on the screen

Q-Extension TOOLS -automorphisms, equivalence

Data_file --> Res_file

1. Codes

2. Binary Matrices

3. Change the complexity local invariant

4. Change the complexity global invariant

5. Automorphisms with f. ord.

6. Change the infilename : "Data_file"

7. Change the outfilename : "Res_file"

No 8. Real_automorphism

9. Show infile "Data_file"

10. Show outfile"Res_file"

11. Main menu

Choose:_

When starting 1, the matrices from the input file are considered as gene-
rator matrices of linear codes, and when starting 2, these matrices are considered
as sets of binary vectors (or incidence matrices of combinatorial designs). The
procedure for automorphisms takes only nonproportional columns (as default)
and it colors them depending on the number of the corresponding column in
the matrix. In such a way some of the automorphisms are lost and therefore
it is written ‘No’ before point 8 in the menu. If you want to find the real
automorphism groups, choose 8. Points 3 and 4 can be used for more difficult
cases, for example combinatorial designs or binary matrices corresponding to
Hadamard matrices.

The next information is for the readers, who are familiar with such type
of algorithms. If you use a local invariant with complexity 3 in level 2, this means
that when you fix one of the coordinates the program will compute the invariant

128 Iliya G. Bouyukliev

for more than
(

n
3

)

m operations which can separate the coordinates into orbits
with respect to the stabilizer of this coordinate.

8. About Efficiency. We give some execution times for a Pentium/2
GHz PC computer, under Windows XP.

program extension time

q ext2 l.exe [5, 5, 1]− l− > [14, 5, 6] 15 sec

[14, 5, 6]− l− > [22, 6, 11] 2 sec

[22, 6, 11]− l− > [47, 7, 22] 1 sec

q ext2 d.exe [45, 6, 22]− d− > [47, 7, 22] 111 sec

q ext4 l.exe [3, 3, 1]4 − l− > [5, 3,≥ 1]4 1 sec

[5, 3, 1]4 − l− > [13, 4, 8]4 66 sec

[3, 3, 1]4 − l− > [13, 4, 8]4 22 min

q ext4 d.exe [13, 4, 8]4 − d− > [14, 5, 8]4 45 sec

[14, 5, 8]4 − d− > [15, 6, 8]4 10 sec

[15, 6, 8]4 − d− > [16, 7, 8]4 10 sec

[16, 7, 8]4 − d− > [17, 8, 8]4 30 sec

q ext tools.exe Randomly 1 000 000 linear codes with parameters [35, 7, d]2 73 min

Isomorphism test and authomorphism group

Randomly 100 linear codes with parameters [30, 15, d]3 9 min

Find spectrum of the linear codes

Randomly 100 linear codes with parameters [30, 15, d]3 10 sec

Find the number of codewords with minimum distance

5000 self-orthogonal codes with parameters [42, 21, 8]2 35 min

Isomorphism test and authomorphism group

What is Q-Extension? 129

9. Installing and starting Q-Extension. You can run Q-Ex-

tension in Pentium computer with minimum 256 MB RAM memory, under
Windows 98, 2000, . . . , or some versions of Linux. You can make a new directory
(for example c:extend) and collect all files from the package. For installing just
unpack the zip file in a separate directory. You can run the different programs
(exe files) in the usual way.

Acknowledgement. The author is very grateful to J. Simonis for his
early and constant interest in this work. The first version of these programs
contains a source code of S. Kapralov – procedure for equivalence of codes and
some other procedures [7].

REFERE NCES

[1] Barg A. Complexity Issues in Coding Theory. In: Handbook of Coding
Theory (Eds V. S. Pless and W. C. Huffman), Elsevier, Amsterdam, 1998.

[2] Bouyukliev I. About the code equivalence. In: Advances in Coding Theory
and Cryptology (Eds T. Shaska, W. C. Huffman, D. Joyner, V. Ustimenko),
Series on Coding Theory and Cryptology, 3. World Scientific Publishing Co.
Pte. Ltd., Hackensack, NJ, 2007. (In Press)

[3] Bouyukliev I., V. Bakoev. Algorithms for computing the number of
codewords of fixed weight in linear codes. Proc. of the Intern. Workshop on
Coding theory and Applications, 14–21 June 2005, Pamporovo, Bulgaria.

[4] Bouyukliev I., J. Simonis. Some new results for optimal ternary linear
codes. IEEE Trans. Inform. Theory 48 (2002), 981–985.

[5] Brouwer A. E. Bounds on the size of linear codes. In: Handbook of Coding
Theory (Eds V. S. Pless, W. C. Huffman), Elsevier, Amsterdam, 1998, 295–
461.

[6] Dodunekov S. Minimal block length of a linear q-ary code with specified
dimension and code distance. Problems Inform. Transmission 20 (1984),
239–249.

130 Iliya G. Bouyukliev

[7] Bogdanova G., P. Christov, S. Kapralov. The new version of QLC
– a computer program for linear codes studying. Proc. Inter. Workshop
OCRT′95, Sozopol, Bulgaria, 1995, 11–14.

[8] Huffman W. C., V. Pless. Fundamentals of Error-Correcting Codes.
Cambridge University Press, Cambridge, 2003.

[9] McKay B. Practical graph isomorphism. Congr. Numer. 30 (1981), 45–87.

[10] Kaski P., P. Ostergard. Classification Algorithms for Codes and Designs.
Springer, 2006.

[11] Petrank E., R. M. Roth. Is code equivalence easy to decide? IEEE

Trans. Inform. Theory 43, 5 (1997), 1602–1604.

[12] Berlekamp E., R. J. McEliece, H. C. van Tilborg. On the inherent
intrac tability of certain coding problems. IEEE Trans. Inform. Theory 24,
3 (1978), 384–386.

Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

P.O.Box 323

5000 Veliko Tarnovo, Bulgaria

e-mail: ilia@moi.math.bas.bg

Received October 23, 2006

Final Accepted June 27, 2007

