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MIXED THEORIES

Slavian Radev

Abstract. In the present paper we investigate the life cycles of formalized
theories that appear in decision making instruments and science. In few
words mixed theories are build in the following steps: Initially a small
collection of facts is the kernel of the theory. To express these facts we
make a special formalized language. When the collection grows we add
some inference rules and thus some axioms to compress the knowledge. The
next step is to generalize these rules to all expressions in the formalized
language. For these rules we introduce some conclusion procedure. In such
a way we make small theories for restricted fields of the knowledge. The most
important procedure is the mixing of these partial knowledge systems. In
that step we glue the theories together and eliminate the contradictions. The
last operation is the most complicated one and some simplifying procedures
are proposed.

Scientific theories are investigated by many authors from different points
of view [4], [5], [6], [8], [11]. There are some differences between authors’ points
of view as well as some differences between levels of the theory constructions.
On the other hand, there are no good investigations of theories produced for
decision-making. Most subjects before making a decision prepare (or use) a
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small theory that helps them in the decision calculation. The correctness of the
decision depends on the postulates of the theory and on the method used in
calculations. Sometimes these methods are logical or almost logical. That is why
we introduce here a model of production of small theories as an introduction and
base for the next chapters. Fortunately, this is not a universal scheme of decision-
making and needs no more argumentation. Moreover, this is not a scheme for
construction of scientific theories and needs no philosophical argumentation. Here
we concentrate our investigations on argumentation methods, operations over ar-
guments and their applications. The theories that appear are not so scientific
and not always correct.

When we make a decision, we do not think about the argumentation. But
later we have to prove that the decision is correct and prepare our arguments,
proof methods and other argumentation (persuasion) attributes. In other words,
we make theories. Simple decisions usually need small theories. When we want to
generalize our decisions, to enlarge the scope of our theories, we have to be careful
because of the conflicts that may appear. If we have only strict and complete
information, or if the information is small and compact, then we apply neither
theories nor proof mechanisms to use our knowledge. Only when the information,
the knowledge, is too large we need some “mnemonic” instruments to order it
and prepare it for use. In the changing world (as well as in the small mind) there
is no sense in using a big general theory. More effective are small theories and
changing inference mechanisms. Small theories are consistent or can easily made
consistent. However, small theories are inconsistent together. Hence, the joint
theories need more powerful mechanisms to be consistent. The practical theories
may be useful independently of their consistency. Here we consider theories build
for decisions, not for science, hence there is some difference between that schema
and Popper’s [11]. The steps we investigate may be applied dynamically together
with the change of our knowledge hence the consistency may be guaranteed in
practice only potentially, partially. The theory mixer, however, allows us to keep
consistence in the parts in which we actually are.

1. How some theories came. We know a lot of facts about different
objects. Naturally, a problem with our knowledge arises: How to organize all
these facts in a system? Usually [12] different variations of the following procedure
(sometimes not even mentioned) are proposed to systematize the knowledge:

• [B] Collect all we know in basic set(s) of our beliefs;

• [L] Make formal language(s) to express our knowledge;
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• [R] Introduce rules of inference;

• [G] Generalize these rules;

• [C] Introduce a consequence mechanism(s) based on the generalized rules;

• [M] Mix the consequence mechanisms;

• [E] Eliminate the conflicts in the consequence procedure.

Consider how this procedure works (informally):
1.1. From B(ase) to L(anguage) B → L. Let B = {B1, . . . , Bn} be

our knowledge base — all the facts (beliefs, observations, experiments) we know.
The first step in the transformation of our knowledge into a theory is to construct
a formal language L (Figure 2) and a translation f : B → L from our knowledge
into language. In such a way we obtain the set c = {C1, . . . , Cn} of formal
expressions corresponding to B and possibly some new expressions that have to
correspond to some potential facts. The language is a very strong abstraction
because some information is lost: e. g., “When Charlie walks he does that and
that, while when Flip walks he does that and that” – is a mimic expression but
not linguistic expression. Without lost of information we can write (at least in
the formalized language here) {B1, . . . , Bn} instead of {C1, . . . , Cn}, but we have
to remember that these are the images of the basic facts. At this step we obtain
a pretheory 〈B,L, f〉 — a collection of facts with a formal language to describe
them. This step corresponds to the data base level of our knowledge and of
informatics practice.

1.2. From B(ase) and L(anguage) to R(ules) B, L → R. When we
know nothing about the structure of the knowledge we are free to make hypotheses
(speculations) and to construct elementary rules about the reasons in the world
that we know about. For instance, we may suppose that from the first two C1 and
C2 the third C3 follows or, which is the same, “C1 and C2 must be true, because
C3 has to be true” (if C1, C2, C3 are simultaneously true the reasoning is in both
directions). And introduce a rule 〈{C1, C2}, {C3}〉. The set R = {r1, . . . , rk} of
such rules is the second stage of the (mnemonic) theory construction. At that
stage we obtain an elementary theory ET = 〈B,L,R〉. The inference mechanism
is simple — every R-ordered subtree of ET is a proof. Elementary theories
are basic objects in the Argumentation Systems, Information Systems, Expert
Systems, Truth Maintenance Systems [1], [2], [5], [7], [9], [15], [16], [17].

1.3. To G(eneralization) B, L, R → G. The set of elementary rules
usually is quite large, hence we construct metarules R1, . . . , Rm generalizing some
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classes of the rules from R using the “typical example” techniques. For simplicity,
we shall denote the set of metarules by the same letter R. It is clear that
firstly (simultaneously) we construct the language L (introduce the linguistic
instruments) in such a way as to prepare the ground for these generalizations.

Typical example. We shall consider theories based on generalizations of typical
examples: Typical examples are the expressions of the language. From a typical
example A(a) we make an abstraction A(x) changing the object’s name a to
the variable x and introducing the rule 〈A(x), A[x/B]〉 for every expression B
admissible for x in the language. Typical examples of this style of generalization
are: the textbook sentence “This is an apple.” in which every new learned
(shown) noun is admissible for substitution instead of “apple”; the logical const-
ruction A ∨ B, in which every expression is admissible for substitution instead
of A or B. The style of many articles is based on typical examples and seems
fruitful. The basic languages also have these typical examples as: York — typical
town, taler (dollar) — typical coin, Caesar — typical dictator (emperor), . . . .

Generalization. A generalization of an expression A(a) is a triple 〈A(a), x, L〉 in
which x is a variable and L is the language of the synonymous words admissible for
a in A. It is easy to see in the previous examples that in the natural language the
typical examples have different languages of words admissible for substitution.
The generalization rules are the most popular inference instruments in logic,
language [15], mathematics, informatics, . . .

1.4. To C(onsequence) B, L, R, G → C. Now only a few expressions
from a set Ax of typical examples and rules from R are sufficient to produce
(prove) all the facts from B (at least all elements of B are typical examples).
The proof mechanism c (see the procedure consequence-aim) is the classical one
— the axioms are proved and if the elements of the input of a rule are proved
then this is the proof of the output. When we enlarge the theory with these rules,
we use the induction and substitution (Figure 1) principles (methods) to generate
all the consequences of the theory. In such a way we produce a classical theory
CT = 〈B,L,R,C〉.

1.5. From theories T1, . . . ,Tn to M(etatheory) B, L, R, C → M.
For every set Bi of facts we can construct in such manner a theory ti. Some of
these theories may have different languages.

For instance the theories: TM of Turing machines, RF of recursive func-
tions, FG of formal grammars, . . . are theories of computations. Analogously
the theories: FA of finite automata, RL of regular languages, KE of Kleene
expressions are also about computations. These theories speak in different lan-
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guages. For the general theory of computation, we need a general language and
general inference method. There are two most popular methods to do that:

1. To find a general language (as in mathematics – set theory or abstract
algebra) and to use the classical logic inference methods.

2. To find an inference method that controls the inferences of the partial
theories and that allow jumping from one theory to another.

It seems that the second method is more human and effective. Using some
mixture procedures, we can work in “small” theories jumping from one theory
to another. Such an instrument works well when the theories are equivalent,
mutually consistent or ordered by inference power. The theories from the first
(second) group of computation theories mentioned are equivalent and every ele-
ment of the second group is a proper subtheory of the corresponding element of
the first group. Hence, we can prove the theorems in these theories in which it is
easy to do (hence easy to understand). Therefore, the proof of the existence of a
fixed-point can be produced in λ-calculus and the proof of Cook’s theorem – in
Turing Machine theory.

In such a way we produce the mixed theory t = 〈B,L,R,M(C)〉 where
B, L, R are the unions of the corresponding objects t1, . . . , tn and M(C) is the
union of all consequence procedures c1, . . . cn.

The side effect of such generalizations of the language and the rules of
the theory is that more sentences are expressible in L and more “theorems” are
provable with the help of the consequence procedure c, rules R, respectively.
Some of these expressions have no correspondence in the situations described
and respectively in the knowledge base B. Naturally some of the “theorems”
will be speculations. Hence at that stage conflicts may appear. Moreover, the
mixture of the theories may introduce a conflict. For instance in the theory of
the concrete computer (with the help of which this article is written) we use an
inconsistent family of “axioms” and theories.

Example: The general theories consist of the following axioms (theorems):

• Every computer is a finite automaton.

• Most programming languages are at least context-free.

• The operation system is a universal program.
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These contradictions do not shame us. Nevertheless, we use these theories
only in a “rough” sense. When we have to perform many iterations we remember
that it is a finite automaton. Hence, we control the inference procedure.

Analogously we have more concrete rules:

• A parity error means that a piece of memory has a defect.

• If it cannot recognize the hard disk then either the disk is faulty or the
battery is old.

But ERROR appears. From the tests of the memory it follows that it
is OK. Moreover tests of all the elements tell us that they are OK. Hence we
have to change the theory of that concrete computer. The result is a stronger
complicated theory and a possible solution – shake the computer.

In such cases we have to eliminate the conflict. In that concrete case we
return to the metatheory — format the disk and shake and clean the computer.
In the overtheory of economics the problem costs more than the computer but
uses the same methods.

1.6. To E(limination) B, L, R, C, M → E. When a theory is
produced there are the following main possibilities:

• A. In this theory a conflict appears: Provable are C and ¬C.

• B. We do not observe a contradiction in the theory t.

In any one of these cases we usually proceed using the “pure” strategies
“change the inference” or “change the language” or any mixture of simple strate-
gies, for instance:

• [a′] when contradictions between the theory and the knowledge base appear:

• [a′.1] Change the rules (proof mechanism) to eliminate the appearance of
the conflict.

• [a′.2] Change the language to eliminate one of the conflict elements (this is
possible because C is a translation of an element from B while its negation
is not).

• [B′] when we do not observe a contradiction: Claim that the theory t
describes the Universe and its neighborhood.
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For instance to eliminate the conflict mentioned in the example above we

• a′.1 read only the instruction of the concrete computer;

or

• a′.2 say that “computability” on that computer is different from “compu-
tability” in formal theories.

Once the contradictions are eliminated from the theory it is ready to work.
The first (mnemonic) step is to find some minimal “basic” expressions with the
help of which all the expressions from B are provable (note that this is another
hard problem). Claim that these basic expressions are the postulates (axioms)
Ax of the theory t. Put these postulates instead of the basic facts B.

Now the simplifications in points A′ restrict the power of the theory t =
〈B,L,R, c〉 (either we change the language — hence it is not so general; or we
change the inference mechanism — hence it is not so simple).

2. Formal theories. As we see the formal theories are built in at least
two levels — elementary theories and generalized theories. In other words formal
theories appear in two instances:

• as a collection of information (when they are based on elementary rules);

• as a generator of hypotheses (when they are based on more complicated
proof mechanisms).

The first step in theorizing any knowledge is to collect facts and to
find some connections between these facts. The collections of facts (with the
elementary rules) are elementary theories Later we generalize these theories to
produce theorems and prove new facts. Hence we introduce generalized theories.
In these theories undecidability appears, whence all the problems of the classical
first-order calculi. In practice the generalized theories are extended with some
heuristic mechanisms hence they usually are based on more complicated conse-
quence procedures. To express some of these procedures we introduce a small
PASCAL-like programming language.

2.1. A programming language. The programming language we use is
an extension of basic PASCAL (or any other popular programming language)
with a class of choice functions choose, and mixture (parallel) operations ρ
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and σ. The result of the operation ρ is the simultaneous execution of both
procedures the (intersection) accumulation; the operation σ compares the results
of both procedures and if they are equal adds the result in the (intersection)
accumulation. The other instruments (functions and procedures) are programmable
in the following manner:

input: x, y, z

if x = λ then x[y/z] := λ

if x = y then x[y/z] := z

if x = ant and y 6= an then x[y/z] := ant[y/z]

output: x[y/z]

Fig. 1. The substitution x[y/z]

The programming language we use is an extension of basic PASCAL
(or any other popular programming language – we have a simple translation
procedure of that language) with an operation choose, and (parallel) operations
ρ and σ. The operation ρ realizes dynamically the union and the operation σ –
the intersection of sets of expressions.

The other instruments (functions and procedures) are programmable in
the following manner:

The result of the substitution we shall denote by x[y/z]. When we make
more substitutions we write x[y1/z1, . . . , yn/zn] instead of x[y1/z1], . . . , [yn/zn],
and assume that the substitutions are made sequentially.

With the help of the substitution we define the formal language of all
logical expressions (Figure 2):

input: B(ase), O(perations)

E := B

while false do

⊗ := choose(O);

A1 := choose(E); . . . An(⊗) := choose(E);

E := E ∪
{

⊗
(

A1, . . . , An(⊗)

)}

output: E(xpressions)

Fig. 2. The language “-all”
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where ⊗ is an operation and E is the set of all expressions. This procedure
produces all the expressions of the logical language but does not halt. With
the help of the operations ρ and α we make the aim-form of that procedure –
instead of false we use some A that verifies the fact that the expressions we need
are obtained. For instance if we want to verify that A1 is of the intersection in
two theories we generate it in both theories. The logic speaks about the set of
all expressions while we need only some concrete expressions. But it is easy to
transform every “-all” procedure to an “-aim” procedure.

The aim-form of the language generator looks as in Figure 3.

Note that the aim may not be the expression but only some properties
of the expression we want to obtain. For instance — to have at least two
conjunctions or disjunctions (depth 2 of the formula). It is clear that the choice
operations can help us to reach the aim faster.

input: B(ase), O(perations), A(im)

E := B

repeat until A

⊗ := choose(O);

for i ≤ n(⊗) do A1 := choose(E);

E := E ∪ {⊗(A1, . . . , An(⊗))}

output: E(xpressions)

Fig. 3. The language “-aim”

The other aim-type procedures are produced in the same manner.

2.2. Elementary theories. An elementary rule is a pair r = 〈Ir, Or〉
of sets of expressions where Ir is the input (premises) and Or is the output
(conclusions) of the rule r. An elementary formal theory is a pair t = 〈L,R〉
where L is a formal language; R is the set of elementary rules.

In other words an elementary theory is a directed graph. A proof of an
expression C is any successful execution of the consequence procedure (Figure 4)
with aim C.

These procedures are context-free — the proof doesn’t depend on the aim
of the proof. In practice we use context-sensitive proof procedures in which the
choice functions depend on the aim of the proof and the corresponding strategies
used in the general procedure.
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input: B(ase), R(ules), A(im)
C := B

repeat until A

for i ≤ n do

A1 := choose(C);

r := choose(R);

if 〈A1 . . . An〉 = Ir then C := C ∪ Or

output: C(onsequence)

Fig. 4. Procedure consequence “-aim”

2.3. Generalized theories. The generalized theories are based on
generalization rules. A form of the procedure which can realize a generalized
rule is given in Figure 5.

input: B(ase), A x1 . . . xn L1 . . . Ln B

for i ≤ n do Di := choose(Li);

B := A[x1/D1 . . . xn/Dn]

output: A[x1/D1 . . . xn/Dn]

Fig. 5. Generalized rule “-step”

The generalized rule-step procedures are the basic inference objects in the
generalized theories. Iteration of the rule-step procedure gives a global inference.

Note that there are interesting implication theories [15] based on a single
generalized rule.

A proof of an expression C is any successful execution of the iteration of
the consequence-aim procedure.

If we have more rules we use the parallel ∆ execution of these rule-steps.

The Tarski relation Cn(t) of all the consequences of the theory t is
obtained when we put false instead of test. Hence the consequence relation is
the ω-result of the loop.

In this definition the language is arbitrary and not formalized. If R and
B are finite, then the set c is also finite even when the procedure has a loop. The
infiniteness comes from the connection between the language-generator and the
proof-generator.
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Both definitions of Expressions and Proof are inductive and we may
connect them.

2.4. Semantics. A theory is consistent if no contradiction can be proved
in it. But a contradiction may appear in nontrivial theories while some trivial
ones may have no contradictions. Hence it is more effective to say that a theory
is consistent if it has a model (Consistency is a property of the deduction system.
Model here means ‘has a semantic function’. Formal proofs of completeness
theorems have the antinomial effect of describing one formal proof by another.
At the end the pure arithmetics of natural numbers is outweighed by thousands
of mathematical theories). From the logical point of view the semantics is any
total mapping of the formulas in the set of truth values. But when we know only
a few facts it is natural to consider partial mappings. Hence we define:

Definition. A partial semantical function (psf) is any mapping s : L →
{0, 1} such that:

s(A ∧ B) = 1 implies s(A) = 1 and s(B) = 1

s(A ∧ B) = 0 implies s(A) = 0 or s(B) = 0

s(A ∨ B) = 1 implies s(A) = 1 or s(B) = 1

s(A ∨ B) = 0 implies s(A) = 0 and s(B) = 0

s(¬A) = 1 implies s(A) = 0

s(¬A) = 0 implies s(A) = 1

Table 6. A partial semantical function

A psf s satisfies the set B of expressions (s ⇒ B) iff s(B) = 1 for all
B ∈ B. If s satisfies B then we say that s is a partial model of B.

Let R be a rule of inference. It is admissible for the set B if there exists
a psf s such that s/B ∼ 1 and s(IR) = 1 implies s(OR) = 1.

Lemma. Obviously we have the following trivial fact:
Every partial semantic function may be extended to a total one. Hence if

a set has a psf then it is consistent.

Moreover we have the following:

Proposition. For every set B and every rule R there is a language L
and a nontrivial plf s such that R is admissible for B.

P r o o f. If the input and output of R contain a contradiction then we
define the negation to be nonclassical. Hence it is allowed that s(A) = 1 and
s(∼ A) = 1. And we define it so. If we have more rules then we divide their
languages as in the procedure c-control. �
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3. Conclusions. This paper is a continuation of [7], [13], [15] where
some relations and some operations over theories are investigated. Relations and
operations over theories as well as changing theories can be found in many papers
by different authors (compare with [4]), [10], [15], [19]). We think that the theory
change is a form of elimination of the conflicts which appear in the inference
procedures. Hence instead of universal control of the connections between theories
we introduce moving control inside the inference procedures.

Suppose that all the theories are built in such manner. From the mnemo-
nic principle it follows that we have to minimize the language and the set of
axioms. Hence we minimize the field of applications. Simultaneously we solve
the next problem: how to combine theories to produce new (or faster) theorems?

In the procedures mentioned in section 2 a nontrivial element is the opera-
tion ‘choose’. Here is not the place to speak about it. In articles about automatic
proof one may find many choice strategies but no language generation strategy.

Sometimes the problem is how to express the theorems and theories for
another (intelligent) agent. One way is to use a family of pseudotheories and
pseudoproofs to convince less exactly agents of the thesis and simultaneously to
“save face” — to continue the proof if it is needed.

There are some interesting directions for investigation:

How are the “magic” proofs produced – the proofs in which the rabbit is
firstly put in the tophat to be later effectively taken out?

How long is the circle proof in dependency of the depth of the control of
the listener?
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[19] Żytkow J. Intertheory relations on the formal and semantical level. In:
Formal Methods in the Methodology of Empirical Science. (Eds M. Przecki,
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