
Serdica J. Computing 1 (2007), 1–12

COMPARATIVE ANALYSIS: A FEASIBLE SOFTWARE
ENGINEERING METHOD

Nelly Maneva

Abstract. The reasonable choice is a critical success factor for decision-
making in the field of software engineering (SE). A case-driven comparative
analysis has been introduced and a procedure for its systematic application
has been suggested. The paper describes how the proposed method can be
built in a general framework for SE activities. Some examples of experimental
versions of the framework are briefly presented.

1. Introduction. A great number of promising methods and techniques
have been created by scientists in the field of software engineering (SE). Unfortu-
nately, most of them remain only elegant intellectual exercises. Such methods
are with small practical value and are not being used (at all or properly) due to
their sophisticated formal descriptions, the lack of defined transition procedures
and supporting tools [4], [5], [9], [15]. Common software practitioners, under the
pressure of the everyday tasks have no resources to study innovations so as to
realize their benefits and to dare to apply them.

Bearing in mind the above mentioned, we try to develop a method satisfy-
ing the following requirements:

ACM Computing Classification System (1998): D.2.9.
Key words: multiple criteria, decision making, quality models, software metrics.



2 Nelly Maneva

• to be general enough so as to be applied into different circumstances;

• to have a sound mathematical basis;

• to be technically and economically feasible;

• to be flexible so as its proper use should be achieved through tuning to
concrete situations;

• to be independent from any particular style of work or environment.

There are three underlining principles for the method:

a) Interpretation

The proposed method should follow the modern paradigm of scientific
knowledge – to move from factological description of the objective world to
dialogical interpretations, made by a valuable subject [20]. In the area of software
engineering this principle means to recognize the role of “peopleware” and to
consider the human factor as a significant and crucial for the success of each SE
activity.

b) Reasonable choice

All software development can be characterized as a problem solving loop
[17] in which we want to build in the principle of the “reasonable choice”. Such
approach will be systematic and efficient because it will accomplish a local optimi-
zation at each critical decision point.

c) Measurement

Method should include the systematic use of software metrics. Measure-
ment enables software people to gain insight into their work and products develo-
ped. Further the obtained measures can be analyzed to provide assistance in
management and technical actions.

The paper is organized as follows. Section 2 describes briefly the proposed
method and the procedure for its application. Section 3 presents a general
framework, through which the comparative analysis can be adopted for practical
use. The feasibility of the framework is examined for a number of software
engineering activities with different significance, scope and complexity. Conclu-
sions in Section 4 summarize the results and give some directions for future work.

2. What is Comparative Analysis (CA). Before starting the
explanation of the method in greater detail, it is necessary to introduce some
terms and notions.

2.1. Definitions. Object – any item under consideration. According
to the Fenton’s classification [8], any object in SE field belongs to one of the
following classes – products, processes or resources.



Comparative analysis: a feasible software engineering method 3

Local state of the object – the condition of an object at a given point in
time.

View – an object description or judgement belonging to a person with
a special role in software development, for example a designer view, a user view,
etc.

Quality – the totality of features and characteristics of an object that
bear on its ability to meet stated or implied needs.

Quality content – object quality considered at a given point in time,
under a specific view.

Comparative analysis is a study of the quality content of a set of
homogeneous SE objects and their mutual comparison so as to select the best, to
rank them (establishing a preference order) or to classify each object to one of
the predefined quality categories.

The comparative analysis (CA) shares the main objectives and methods of
the broad theory of Multiple Criteria Decision Making [3], [21], trying to specify
and apply them systematically in the field of software engineering.

Two main participants have been involved: the Analyst , responsible for
all aspects of CA implementation, and a CA customer. CA customer is a single
person or a group of persons, tasked with making a decision in a given situation.
Depending on the customer’s role (a programmer, a project or a quality manager,
a user, etc.) the defined problem and the software life cycle moment, a case

should be opened to determine the context of the desired comparative analysis.

Each case can be described by the following elements:

case = {View, Goal, Object, Competitors, Task, Level}.

The View describes the customer’s role and the perspective from which
the comparative analysis will be performed.

The CA Goal can be:

• to characterize (to gain understanding);

• to evaluate (to determine status with respect to expectations);

• to predict so that it will be possible to plan what to do;

• to improve the situation;

• other – defined by the customer.

The Object represents the SE object under consideration.

The set of characteristics selected to represent the quality content and
the set of their relationships constitute the object quality model. It creates a
description of the object, to which the proposed CA will be applied.



4 Nelly Maneva

According to the Goal, the instances of the objects to be compared have
been selected, forming the set C of Competitors C = (C1, C2, . . . , Cn).

The size and the content of the set C depends on the defined Goal of the
desired CA. This can be illustrated by the following examples:

Example 1. If the Goal is only to create the quality model of a given
object, then the set C is empty.

Example 2. If the Goal is to evaluate the quality of one object, the set
C comprises only one element – an instance of the object.

Example 3 . If the Goal is to perform the Comparative analysis so as to
obtain the ranking of a number of objects, the set C comprises these objects.

Example 4 . If the Goal is benchmarking, the set C has two elements –
the analyzed object and the model of the “ideal” object.

Example 5 . If the Goal is to study the tendencies in quality achievements,
the set C should comprise the instances of the consecutive local states of the
object.

Example 6. If the Object is a project and the Goal is to assess the
progress of the current project, the set C will comprise the project under develop-
ment and some previously evaluated projects, for which there are available histo-
rical data.

The CA Task can be Selection (to find the best), Ranking (to obtain a
completely ordered list), Classification (to define the appropriate quality category
for each object) or any combination of them.

The depth Level defines the overall complexity of the CA and depends on
the importance of the problem under consideration and on the resources needed
for CA implementation. The key idea is to adjust the performed comparison to
the intentions of the Customer. Sometimes only a quick insight into the quality
of a small set of objects is needed, contrary, for example, to a sophisticated CA
to support crucial decision about long-term strategic program.

Object quality model. The case-driven CA begins with creating the
hierarchical object quality model. The first level comprises m quality factors
F1,F2, . . . ,Fm. They characterize the local state of the object as regards the
defined case. Each factor Fj must be weighed in accordance with its relative
importance. So, the following vector:

W(m) = (w1,w2, . . . ,wm)

is associated with the set of factors.
Depending on the defined depth level and the cognitive complexity of the

factors, the latter can be further decomposed. The obtained hierarchical structure



Comparative analysis: a feasible software engineering method 5

describes which quality characteristics will be considered at different levels and
what the relationships among them will be.

One of the most challenging problems in CA implementation is the crea-
tion of a quality model for a given object. Our suggestion is to apply an incremen-
tal approach. When a new object appears, the Analyst has to create its first
model, using different sources of information. The Customer’s requirements to
the object should be analyzed and reformulated in terms of quality characteristics.
Our experience till now shows that any Internet Search engine is a perfect tool for
finding and thoughtfully studying some existing models. Then the created model
is saved as a generic (basic) model for the object under consideration. When a
request for CA of the same object arises, the generic model should be modified.
First, there should be an attempt to find some new quality characteristics to be
added at some levels of the hierarchy so as to reflect a new view or goal of the
current case. If the try is successful, the expanded hierarchical structure will be
stored as a generic model. The second step in modification is to decide whether
some characteristics can be ignored as irrelevant to the case under consideration.
So a derivative of the model is obtained. A special pattern, describing the
deviation from the basic model is created and saved with reference to the case
for further re-use.

On the basis of some published research results a number of generic models
have been created – for software products, for representations, for SE processes,
for software standards, for developers, etc.

As an example we can mention the generic model, created for the object
“SE model”. This model comprises three quality factors (Utility, Applicability,
Validity) at the first level of hierarchy and a number of criteria at the second level.
The definitions of the quality characteristics and the corresponding hierarchical
model can be found in [14].

Software metrics. According to the third underlining principle for the
CA, the use of software metrics is obligatory. Unfortunately, the flexibility of the
case-driven CA with arbitrary objects and dynamically defined derivatives of their
quality models makes the measurement problem quite difficult. Theoretically,
each characteristic, represented as a node in a generic quality model can be a leaf
in some derivative model and for this characteristic an appropriate metric should
be assigned.

The foundation of the software measurement theory has been built [8],
[10], [22] and a significant number of software metrics have been proposed (an
Internet search engine shows more than 45000 entries!). So our suggestion is to
classify the existing metrics according to the measured characteristic and when



6 Nelly Maneva

a metric is needed to look for a similar one. As for the object quality models,
the same approach for incremental construction of a collection of re-used metrics
should be applied. To facilitate the saving into repository and searching the
appropriate metric, a unified scheme for metric description has been proposed,
which comprises:

• the conceptual and operational definition of the measured characteristic;

• the measurement method and the procedure for its application (in case it
is possible – with two different complexity levels);

• general information about the background and validity of the metric.

In order to show the feasibility of our approach we select the checklists as
a universal technique for obtaining the measure of a given quality characteristic.
The reasons for our choice are:

• this technique is experimentally validated;

• the technique is flexible enough, because it poses the right questions at the
right moment – very convenient for the case-driven comparative analysis;

• all questions are formulated in a natural language and the so called “intel-
lectual barrier” [22] can be overcome more easily;

• there is a great number of existing and available checklists, which can be
used with minor modifications;

• it is easy to define different complexity levels in assessment, controlling
the number of questions and the applied scale for the answers – binary or
k-degree.

The experiments till now confirm the applicability of checklists in various
cases.

Evaluation and exploitation of the results. When the object model
is created and the set of metrics for leaves are defined, the next step is to perform
a bottom-up evaluation in order to obtain a measure for each factor for each of
the compared objects. Thus we fill the objects-factors matrix E(n × m), where
n is the number of the objects and m is the number of the quality factors. Each
element Ei,j is the measure of the i-th object with respect to the j-th quality
factor.

Further we have to perform the selection, ranking or classification task. So
we can find the object with the best quality or identify some objects as the most
promising candidates for further study, or we have a ranking or a classification
to support the customer’s decision.

There are a number of methods, well known from the field of MCDM. Till
now two methods for selection and two methods for ranking have been adapted
and implemented. There is an available prototype of a classification tool [7],



Comparative analysis: a feasible software engineering method 7

which will be re-engineered and added to the collection of methods.

Some heuristics have been proposed so as to select that method for the
CA task, whose complexity matches the defined depth level.

The last stage of the comparative analysis is the study and interpretation
of the results according to the posed goal.

Considering the same crucial for the decision making situation, we can
analyze it from distinctly different perspectives (from the point of view of partici-
pant, who can be a developer, a project manager, a tester or a user). Thus
different cases should be opened and a systematic and thoughtful approach to
the problem solving will be accomplished.

Some formal techniques have been introduced for constructing the Direc-
ted Acyclic Graph, which represents the hierarchical quality model, for defining
the software metrics and their statistical validation and for describing the available
methods of selection, ranking and classification.

2.2 A process model for the comparative analysis. Within the
comparative analysis a number of steps can be identified, such as pre-analysis,
preparation, construction, execution and completion. Each step comprises a
number of activities. For each activity its aim, the results to be obtained and
how the activity must be performed have been described. This model clarifies
who has to do what and when thus making the comparative analysis manageable
and properly applicable.

The detailed model can be described as follows:

Step 1. Pre-Analysis. For the initialization, a Customer may identify
a problem for which the Comparative Analysis seems to be useful. Recognizing
the need for CA, the Customer creates a CA Request, comprising an informal
description of the problem situation, moment and area of consideration.

The CA Request is examined by the Analyst, who performs an analysis of
its conceptual and technical feasibility and decides how to proceed. The request
can be declined, postponed or accepted. The Customer receives a notification
together with a reasoning behind the decision.

Step 2. Preparation. When the CA Request is approved a new case is
opened and the second step should be accomplished. The purpose of this step is
to define the CA context and to plan the CA implementation.

First, the components of the opened case must be defined, namely the
View, Goal, Object, Competitors, Task and Level. The relevant sources of
information, needed for the CA performance should be determined and made
available.



8 Nelly Maneva

Second, a CA plan is created. It describes the overall organization,
personnel involved, tasks and responsibilities allocation and CA schedule. A
rough indication of the cost is also given.

Step 3. Construction. This step is made up of four substeps:
Substep 1. Create a new or modify an existing generic model so as to

obtain a derivative object model for the CA, driven by this case.
Substep 2. Create or select and modify a metric for each leaf in the

derivative hierarchical object model.
Substep 3. Select and apply a method for determining the weights for

the quality factors under consideration. Apply the MECCA (Multi-Element
Component Comparison and Analysis) approach for definition of the weights
within the whole hierarchical structure.

Substep 4. According to the defined CA Task and depth Level, select the
most appropriate method for selection, ranking or classification.

Step 4. Execution. The purpose of this step is to obtain the desired
results.

Substep 1. Perform the evaluation of each object from the set of Compe-
titors and fill the objects-factors table.

Substep 2. Analyze the results of evaluation and transform the table into
a normalized form.

Substep 3. Apply the selected method, accomplishing the CA task and
document the results obtained.

Step 5. Completion.
Substep 1. Analyze the CA results, prepare the final report and plan

some follow-up activities.
Substep 2. Describe and register some new re-use components, i.e. a case,

a basic model or a pattern for the derivative model, metrics, checklists, etc.
Substep 3. Assess the performed comparative analysis. The created

concluding report should summarize the identified problems in CA implementa-
tion, cost and time planning versus realization and some recommendations for
improvement. The parameters of the CA should be added to historical data to
be available for further processing.

A tool supporting the main steps of the comparative analysis has been
implemented.

A number of factors are identified to be of great importance for the success
of the Comparative analysis, namely:

• qualification, motivation and commitment of all people, involved in CA
implementation;



Comparative analysis: a feasible software engineering method 9

• solid theoretical basis and appropriate level of validity of all re-used compo-
nents, especially for the basic object models, metrics and applied methods;

• degree of the automation of the activities performed during the CA – i.e.
the quality of the supporting tool.

3. INSPIRE: a framework for SE activities. Next we try to
put together the comparative analysis and some well-known best practices in the
field so as a general SE framework to be defined. The assumption is that there
are many useful methods and techniques and the aim should be to develop an
approach, which will encourage software developers to use it in their practical
work.

The proposed methodology has been described in [16]. Here we are going
only to present the key ideas, encoded in the name of the approach. Follows their
brief explanation.

The approach should be:

• Incremental – to start with some regulations and their systematic use for
only a few selected SE activities and after their successful adoption to join
other ones;

• Neat: to be precise, systematic and straight, based on the use of the same
agile method, supported by an automated tool and with a well-defined
implementation cycle;

• Scalable: to be flexible so as to reflect the particular features of a software
company, project, controlled SE activities, etc. To allow a few different
complexity levels of implementation according to the stated goal and planned
resources;

• Permanent: to be persistent in the approach realization and to achieve
continuous improvement through a long-term strategy;

• Integrated: to construct and support a set of mutually interrelated activities,
whose joint implementation will bring some benefits;

• Right: to be in accordance with what is proven to be just, good or proper,
comprising a number of already validated methods and best practices;

• Estimable: to include the software measurement as an obligatory “umbrella”
activity because it is widely recognized that “we cannot control what we
cannot measure”.

We believe that it is possible to create such a “perfect” approach, satisfying
so many requirements through the Comparative Analysis – a method, applicable
to the software engineering work at any moment of the software life cycle. It can
be used at any situation, where a reasonable choice should be made with changed



10 Nelly Maneva

view, goal and level of resolution. Once the framework is adopted in a given
software organization, it is invariant and serves as the basis for the systematic
application of the comparative analysis.

We develop the framework together with some well-defined rules for its
transfer into practice – the framework introduction into a given software company
should comprise well defined steps [16].

In order to examine the feasibility of our approach, we try to apply it
to several SE activities with different significance, scope and complexity. Next
follows the activities, selected for the experiments: software quality assurance
[11], usability assurance [12], outsourcing development [13], and teamwork buil-
ding [16]. More details and the lessons learned can be found in the published
papers, mentioned above.

4. Conclusions. Some directions of our future research and practical
work are the following:

• to expand the collection of generic models for different SE objects, analyzing
the existing and looking for some new proposals for quality characteristics.
It will be nice to be able to define a kernel set of quality factors for each
class (products, processes and resources) to start with and enrich it further
for a particular object.

• to apply the suggested approach to of-the-shelf software packages and see
whether the CA approach can facilitate the evaluation and selection of
complex application software such as ERP (see [1]), CRM and the like.

• to create a conceptual model of an integrated environment, supporting the
proposed INSPIRE framework and to develop a prototype to examine its
features;

• to identify some active research centers in the field of SE and to look for
collaboration with their experts so as to improve the theoretical basis and
the content of the re-use repository.

REFERE NCES

[1] Ahituv N., S. Neumann, M. Zviran. A System Development
Methodology for ERP Systems. Journal of Computer Information Systems,
Spring (2002), 56–67.



Comparative analysis: a feasible software engineering method 11

[2] Anderson E. A Heuristic for Software Evaluation and Selection. Software

Practice and Experience 19, No 8 (1989), 707–717.

[3] Biro M. et al. Business Decision Problems Supported by Software Product
and Process Assessment. ISCN’95 – Newsletter,
http:/www.iscn.ie/news/iscn95/doc-15.html

[4] Brooks F. P. No silver bullets: Essence and accidents of SE. IEEE

Computer 20, No 2 (1987), 10–19.

[5] McConnell St. After the Gold Rush. Microsoft Press, 1999.

[6] Delvin, K. The real reason why software engineers need math. CACM 44,
No 10 (2001), 21–22.

[7] Eskenasi A., V. Angelova. A New Method for Software Quality
Evaluation. Journal of New Generation Computer Systems 3, No 1 (1990),
47–53.

[8] Fenton N. Software Metric – A Rigorous Approach. Chapman&Hall, 1991.
http://vorlon.ces.cwru.edu/∼bxm4/radial.html

[9] Hussman H. Formal Foundations for Software Engineering Methods.
Springer-Verlag, 1997

[10] Jones C. Applied Software Measurement. McGraw-Hill, 1997

[11] Maneva N. Implementation of a Software Quality Improvement Program.
Proc. of the Int. Conference CompSysTech’2000, II.7-1, II.7-6.

[12] Maneva N. An Approach to Usability Assurance. Proc. of the Int.
Conference CompSysTech’2003, II.3-1, II.3-5.

[13] Maneva N. Software Quality Assurance and Maintenance for Outsourced
Software Development. Proc. of the First Balkan Conference on Informatics,
21–23 Nov 2003, Thessaloniki, Greece, 644–649.

[14] Maneva N. Software Engineering Models and their Evaluation. Proc. of
the MASSE’2003, Mathematica Balkanika, New Series 18, Fasc. 1–2 (2004),
149–156.

[15] Pressman R. Software engineering – A Practitioner’s Approach, Fifth
edition. McGraw Hill, 2001.



12 Nelly Maneva

[16] Maneva N., Nikolova N. Team-work training for software people. Proc.
of the 34 Spring conference of the UBM, Math. and Education in Math. 34
(2005), 243–250.

[17] Raccoon L. B. S. The Chaos Model and the Chaos Life Cycle. Software

Engineering Notes 20, No 1, (1995), 55–66.

[18] Raccoon L. B. S. Fifty years of progress in SE. Software Engineering Notes

22, No 1 (1997), 88–104.

[19] Sanders J., E. Curran. Software Quality. Addison–Wesley, 1994.

[20] Wilber K. A Brief History of Everything. Shambhala Publ. Inc., 1996

[21] Zelemy M. Multiple criteria decision making. McGrow-Hill Book Company,
1982

[22] Zuse H. A Framework of Software Measurement. Walter de Gruyter&Co,
Hawthorne, NY, USA, 1997

Software Engineering Dept.

Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 8

1113 Sofia, Bulgaria

e-mail: neman@gbg.bg

Received February 15, 2006

Final Accepted February 23, 2007


