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THE VALUE OF KNOWING THAT YOU DO NOT KNOW

Gil Greenstein, Niv Ahituv

Abstract. The value of knowing about data availability and system ac-
cessibility is analyzed through theoretical models of Information Economics.
When a user places an inquiry for information, it is important for the user to
learn whether the system is not accessible or the data is not available, rather
than not have any response. In reality, various outcomes can be provided
by the system: nothing will be displayed to the user (e.g., a traffic light that
does not operate, a browser that keeps browsing, a telephone that does not
answer); a random noise will be displayed (e.g., a traffic light that displays
random signals, a browser that provides disorderly results, an automatic
voice message that does not clarify the situation); a special signal indicat-
ing that the system is not operating (e.g., a blinking amber indicating that
the traffic light is down, a browser responding that the site is unavailable, a
voice message regretting to tell that the service is not available). This article
develops a model to assess the value of the information for the user in such
situations by employing the information structure model prevailing in In-
formation Economics. Examples related to data accessibility in centralized
and in distributed systems are provided for illustration.
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The results of the analysis indicate that there is a direct relationship be-
tween the knowledge about systems accessibility or data availability and its
informativeness. The addition of a signal indicating system inaccessibility or
data unavailability increases the expected value of information derived from
the system. The article proves a theorem related to the research question
and discusses the theoretical and practical interpretation of the results.

1. Introduction. Despite the ever-increasing importance of informa-
tion resources, evaluating the actual benefit of using information systems remains
problematic. The normative models that aim to forecast the real value of infor-
mation cannot always be related directly or unequivocally to the real value of
the information systems [3]. Moreover, over the years significant research has
been conducted to address issues of “not knowing”, for example the phenomenon
that Simon [26] termed “bounded rationality”. Some of its aspects were analyzed
comprehensively by Rubinstein [23].

In this study we attempt to model the value of knowing whether the user
can obtain requested data or not. Specifically, we evaluate the benefits deriving
from adding a feature to a system indicating the unavailability of information.
This discussion is specifically relevant to the design of Data Mining and Knowl-
edge Management systems, Browsers, and Decision Support Systems.

To simplify the discussion, we begin by defining a number of key concepts.

Level of accessibility: the percentage of queries that the information
system responds to, based on accessible information, providing the user with the
requested information.

Absolute uncertainty, no-information: a decision situation in which
the information system user does not possess any additional information beyond
the a priori probability of states of nature occurring.

No-information signal: a special signal received in situations where
the system is not accessible.

The methodology of the study. We will describe situations of lack
of information by extending the information structure model [19, ch. 5.] We
will investigate the quantitative value of knowing that there is no accessible
information, as opposed to a situation in which the user does not know that the
information is not accessible. The value of the information of various models
expressing system inaccessibility will be compared analytically.
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An example of a real life situation is the blinking amber signal, which tells
us that the traffic light is out of order. Closer to the subject of our discussion is
the Windows hourglass, which indicates that the operating system is busy and
the results of its operations are not yet available. Another example, of course,
is a browser’s response that a requested website is not accessible. This is a no-
information signal, without which we do not know if the system is accessible or
not. We will show that an information system that produces a no-information
signal to indicate unavailability is generally more informative than any similar
information system that indicates unavailability in a different way. Clearly, the
usefulness of an information system to the user is seriously restricted if the user
cannot identify situations of unavailability.

The structure of the article. The next section reviews the pertinent
literature in the area of Information Economics. Moreover, it focuses on the
information structure model and the Blackwell Theorem [19, ch. 5]. Section 3
describes the factors that affect the value of the information, and discusses the
basic premises underlying the model. It then describes the models in the light of
these underlying premises. Section 4 presents examples that illustrate the general
informativeness ratios and the value of information systems under different levels
of accessibility. A theorem that characterizes the value of a no-information signal
is presented and illustrated. Section 5 draws some conclusions and discusses the
contribution of the study and its significance.

2. Analytical research into the value of information in the

area of Information Economics. In assigning an expected normative
economic value to information systems, many researchers made use of Micro-
economic theory and Statistical Decision Theory tools. The combination of utility
theory and the perception of a noisy system led to the construction of a proba-
bilistic statistical model that accords to an information system the property of
transferring input data (states of nature) to output (signals) with a certain sta-
tistical probability [16, 18]; see also the collection of articles on the subject edited
by McGuire and Radner [19]. This model, which delineates a noisy information
system, is called the information structure model. It is based on the assumption
that the system is noisy but it does not analyze the nature of the noise. In this
study, we analyze the noise and construct a model that attempts to deal with
two types of noise that are typical to an information system:

1) An information system that produces a no-information signal in a situation
of absence of information, namely, a system that informs the user that it
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cannot produce a meaningful signal in certain situations. The user knows
that he or she does not know. (For example, when someone asks me for
Julia Roberts’ home telephone number I can say immediately that I do not
know it. The decision-maker, that is the person requesting the information,
knows that he or she has received a no-information signal.)

2) An information system that produces a random signal in the case of lack
of information. The user does not know that he or she does not know (for
instance, in continuation of the previous example, if the answer is a series of
random digits in the form of a telephone number, the decision-maker does
not know that he or she does not know).

Intuitively, receiving a no-information signal should be better than receiving
a random signal, but it might also incur some cost due to the need of adding
a function to the system. So how can a decision-maker evaluate the benefit
of knowing that he or she does not know?

In this study, we will address the issue of not knowing by finding tools to
determine a general informativeness ratio amongst information systems. We will
build models to represent lack of information and present general informativeness
ratios among different levels of lack of information.

2.1. The information structure model and the Blackwell Theo-

rem. The tool employed to investigate the phenomena described in section 4 is
the information structure model [19, ch. 5, pp. 101–109], [5]. This is a general
model for comparing information systems based on the assumptions of rational
behavior. According to the information structure model, four factors determine
the expected value of information.

1. The a priori probabilities of a set of pertinent states of nature.

2. The information system – a stochastic (Markovian) matrix that transmits
states of nature to signals.

3. The decision matrix – a stochastic matrix that links the signals with the
decision set of the decision-maker.

4. The payoff matrix – a matrix that presents the quantitative compensation
to the decision-maker resulting from the combination of a decision chosen
and a given state of nature.
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The information structure model enables comparison of information sys-
tems in terms of their quantitative economic value. An information structure
Q1 is said to be more informative than an information structure Q2 if the ex-
pected payoff of using Q1 is no lower than the expected payoff of using Q2. Two
information structures may be compared at several levels:

1. Comparison between two information structures for a given vector of a
priori probabilities and a given payoff matrix.

2.1. Comparison between two information structures when the vector of proba-
bilities for the occurrence of states of nature is given and all payoff matrices
are possible (a generalization for all possible compensations).

2.2. Comparison between two information structures when the payoff matrix is
known in advance and the vector of a priori probabilities of states of nature
is not known in advance (a generalization for all possible probabilities).

3. Comparison between two information structures for all vectors of a priori
probabilities of the occurrence of states of nature and any possible payoff
matrices.

When information structure Q1 is more informative than information
structure Q2 according to ratio 3 above (irrespective of compensations and a pri-
ori probabilities), a general informativeness ratio is defined between them.
This ratio and the conditions for its existence are defined in Blackwell’s Theorem
[19, ch. 5].

Let us now consider a model in which S is a finite set of n states of nature:
S = {S1, . . . , Sn}.

Let

Π =









p1 0 . . . 0 0
0 p2 0 . . . 0
. . . . . . . . . . . . . . . . . . . .
0 . . . . . . 0 pn









,

where Π is a square matrix whose diagonal is the a priori probabilities of obtaining
states of nature and the remaining elements are equal to 0.

Let A be a finite set of k possible decisions, A = {A1, . . . , Ak}.

Let U be the payoff function: U : A × S → ℜ (a combination of a state
of nature and a decision gives a fixed compensation that is a real number).

Let Y be a finite set of m signals, Y = {Y1, . . . , Ym}.
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An information structure Q is defined such that its elements obtain
values between 0 and 1,

Q : S × Y → [0, 1].

Qi,j is the probability that a state of nature Si displays a signal Yj.

m
∑

j

Qi,j = 1.

Let D be the decision function. Like Q, D is a stochastic (Markovian)
matrix; namely, it is assumed that the decision is not necessarily always the same
for a given signal.

D : Y × A → [0, 1].

The expected payoff is Trace(Π ∗ Q ∗ D ∗ U), where Trace is an operator
that sums up the diagonal terms of the square matrix. The objective function
for maximizing the compensation expectation is Max

D
(trace(Π ∗ Q ∗ D ∗ U)).

When the utility function is linear, that is, the decision-maker is of EMV
(Expect Monetary Value) type [20], a linear programming problem is obtained,
where the variables being the elements of the decision matrix D. One of the
optimal solutions is in a form of a decision matrix whose elements are 0 or 1 (a
pure decision).

A numerical example: Let Q be an information structure representing
an information system for managing a firm’s inventory: when an item is requested,
the system has to say whether it is in stock. For the sake of simplicity, suppose
there is only one item in stock. Thus there are two states of nature:

S1 – the item is in stock p(S1) = 0.9;
S2 – the item is not in stock, p(S2) = 0.1.

The information system produces two signals:

Y1 – the item is available;
Y2 – the item is not available.

Suppose Q =

(

0.95 0.05
0.05 0.95

)

is this information structure.

Let A be the set of possible decisions: A1 – do not order; A2 – order. Let

D be the decision matrix: D =

(

d11 d12

d21 d22

)

.
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Let U be the payoff matrix: U =

(

0 −5
−1 0

)

.

Note: −1 indicates a loss due to ordering an item that is in stock (cost of
maintaining stock); −5 indicates a loss due to not ordering an item that is not
in stock (non-production cost).

The probability matrix Π is described as follows: Π =

(

0.9 0
0 0.1

)

It can be shown that Max
D

(trace(Π ∗ Q ∗ D ∗ U)) = −0.07, where

D =

(

1 0
0 1

)

is the decision matrix, which contains two pure decision rules

(A1 – Do not order | Y1; A2 – Order | Y2).

Over the years, a number of researchers developed analytical models to
implement the concept of the “Information structure model” in order to evaluate
the value of information. Some studies analyzed the correlation between this
method of operation research and information technology. Ahituv [2] demon-
strated the life cycle of decision support information system with the model.
Ahituv and Elovici [4] evaluated the value of the performances of distributed in-
formation systems. Elovici et al. [15] used this method to compare performances
of Information Filtering Systems. Ahituv and Greenstein [5] used this model to
assess issues of centralization vs. decentralization. Aronovich and Spiegler [10]
use this model in order to assess the effectiveness of data mining processes.

Moreover, the model was expanded to evaluate the value of information
in several aspects: the value of a second opinion [6], the value of information non-
linear models of the utility theory [24], analyzing the situation of case dependent
signals (the set of signal is dependent on the state of nature, [28]), a situation of
a two-criteria utility function [22].

The model was applied to evaluate empirically the value of information
in a post office [14] and in the process of analysis of Quality Control methods
[21, 17].

2.2. A convex combination of information structures. Sulganik
[27] indicates that a convex combination of information structures could be used
to describe experimental processes (with a probability p of success and (1− p) of
failure). For example, he investigates the convex combination of two information
structures: one presents perfect information and the other one no-information
(all its rows are identical).

The mechanism of convex combinations of information structures is em-
ployed in an earlier research by Ahituv and Greenstein [5] which analyses the
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effect of probabilistic availability of information systems on productivity and il-
luminates some aspects of the phenomenon termed “the productivity paradox”
[11, 12, 13, 8]. In this paper we will use this mechanism to analyze quantitatively
the value of being aware of the unavailability of information.

A convex combination of two information structures is defined as follows:

Let Q1 and Q2 be two information structures describing information sys-
tems. Let S = {S1, . . . , Sn} be their set of the states of nature. Let Y =
{Y1, . . . , Ym} be their set of signals. When a decision situation is given let p be
the probability that Q1 will be activated, and (1 − p), that Q2 will be activated.
Q3, the weighted information structure, is represented by a convex combination
of Q1 and Q2

Q3 = p ∗ Q1 + (1 − p) ∗ Q2.

The decision maker is not aware, of course, which information structure is acti-
vated.

2.3. The general informativeness ratio. Given two information
systems that deal with the same state of nature and are represented by the infor-
mation structures Q1 and Q2, Q1 will be considered generally more informative
than Q2 if its expected payoff is no lower than that of Q2 for all a priori probabil-
ity vectors and any payoff matrix. In terms of the information structure model,
if for every possible payoff matrix U and for every a priori probability matrix Π
Max

D
(trace(Π ∗ Q1 ∗ D ∗ U)) ≥ Max

D
(trace(Π ∗ Q2 ∗ D ∗ U)) (where trace is the

sum of all the elements of the main diagonal of the product square matrix), then
Q1 is generally more informative than Q2, denoted Q1 ≥ Q2. Blackwell’s Theo-
rem states that Q1 is generally more informative than Q2 if and only if there is
a Markovian (stochastic) matrix R such that Q1 ∗ R = Q2. It should be noted
that the general informativeness ratio is a partial rank ordering. There is no
necessary rank order between any two information structures. The rank ordering
is transitive.

A numerical example:

Q1 =

(

1 0
0 1

)

≥ Q2 =

(

0.95 0.05
0.05 0.95

)

,

and

Q =

(

0.95 0.05
0.05 0.95

)

≥ Q3 =

(

0.9 0.1
0.1 0.9

)

,
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Hence Q1 =

(

1 0
0 1

)

≥ Q3 =

(

0.9 0.1
0.1 0.9

)

.

3. Modeling accessibility level by using the Information

Structure Model. In this section we will discuss the notion of the accessibility
of an information system.

3.1. Level of accessibility. Let p be the probability that an information
system will provide an effective response to a query. An effective response is
obtained if the system is accessible for a period of time sufficient for making a
decision, and if the system can provide the user with the information required.

3.2. The effect of a signal produced by the system when it is not

accessible. IS professionals can design fault-handling scenarios for situations in
which the system is not available. There is a possibility of acknowledging users
about situations of unavailability by alarming the decision-makers with a special
no-information signal [5]. This paper discusses and analyzes two scenarios related
to inaccessibility:

1) The system randomly produces a signal of some sort. The user is not aware
of the system’s inaccessibility.

2) The system produces a no-information signal indicating that the system is
not accessible. Thus, the user is aware that the system is not accessible.

3.3. Typical information structures. In order to analyze the situa-
tions of lack of information, various types of information structures are demon-
strated. These types of information structures react differently to situations of
inaccessibility. Some of them deal with total uncertainty, which mean that they
do not produce any meaningful signal. Other types of information structures
inform us using a special signal that the information is not available. The analy-
sis of the level of accessibility will be introduced in the following subsection.
First, some information structures that pertain to an inaccessibility situation are
presented.

3.3.1. A general information structure representing total un-

certainty. Let M(Q) be an information structure describing a situation of
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total absence of information for a set of states of nature S and a set of signals Y
of the information structure Q, such that

∀ i, 1 ≤ i ≤ n ∀ j, 1 ≤ j ≤ m M(Q)i,j = P (Yj |Si)

∀ i, 1 ≤ i ≤ n ∀ k, 1 ≤ k ≤ n ∀ j, 1 ≤ j ≤ m M(Q)i,j = M(Q)k,j

Such information structure implies that it is not possible to have any
additional information about the event that had triggered a given signal beyond
what can be elicited from the a-priori probabilities.

Example: 0 ≤ a ≤ 1 Y = {Y1, Y2} S = {S1, S2} M(Q) =

(

a 1 − a
a 1 − a

)

.

In subsections 3.3.2, and 3.3.3 two special cases of M(Q) will be presented.

3.3.2. An information structure representing uncertainty – a

random signal with uniform distribution. Let N(Q) be an information
structure describing a situation of absolute uncertainty for a set of states of
nature S and a set of signals Y of an information structure Q, namely, a random
signal is received in a situation of uncertainty. N(Q) is a special case of an
information structure of the type M(Q), which represents a situation of absence
of information. It is described as follows:

∀ i, i = 1, . . . , n ∀ j, j = 1, . . . ,m : N(Q)i,j = P (Yj |Si) = 1/m.

Obviously, for all i:
m
∑

j=1

= N(Q)i,j = 1. For example, Y = (Y1, Y2),

S = (S1, S2), N(Q) =

(

0.5 0.5
0.5 0.5

)

.

3.3.3. An information structure representing an information

system that identifies lack of information, and an information struc-

ture representing the display of a no-information signal. Let Q be an
information structure describing an information system. Let S = {S1, . . . , Sn} be
the set of the states of nature of Q. Let Y = {Y1, . . . , Ym} be the set of signals of
Q. Let Ym+1 be a no-information signal which is not a part of the set of signals
of Q.

Clarification. Ym+1 is a signal that is not displayed during normal sys-
tem operations, but only when a situation of absence of information is identified.
This signal aims to indicate cases in which the system is not accessible for the
user and identifies itself as such. In other words, the system informs the user that
it is not informative at that moment.
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Let Q0 be an information structure describing an information system with
the addition of a no-information signal. Let S = {S1, . . . , Sn} be the set of the
states of nature of Q0. Let Y0 = {Y1, . . . , Ym, Ym+1} be the set of signals of Q0.

Q0i,j
= Qi,j 1 ≤ i ≤ n, 1 ≤ j ≤ m

Q0i,j
= 0 1 ≤ i ≤ n, j = m + 1.

The levels of general informativeness of Q and Q0 are identical [1]. There-
fore Q0 will be used later to represent the information structure Q in the models
illustrating information systems that provide a no-information signal.

Let N0(Q) be a structure that represents a no-information signal for in-
formation structure Q. Let S = {S1, . . . , Sn} be the set of the states of na-
ture of Q. Let Y = {Y1, . . . , Ym} be the set of signals of Q. Let Ym+1 be a
no-information signal that is not part of the set of signals of Q. Let S be its
set of states of nature and Y0 = {Y1, . . . , Ym, Ym+1} the set of signals of N0(Q).
N0(Q)i,j = 0, where 0 ≤ j ≤ m and N0(Q)i,j = 1, where j = m + 1.

Example. S = {S1, S2}, Y = {Y1, Y2}, Y0 = {Y1, Y2, Y3}; Y3 is the

no-information signal, N0(Q) =

(

0 0 1
0 0 1

)

.

3.4. Accessibility in Terms of Probability. Suppose that p is the
weighted level of accessibility of Q1. We denote the actualization of the informa-
tion structure Q1 at a level of accessibility p by Q2. Q2 is the convex combination
of Q1 and M(Q1).

Q2 = p ∗ Q1 + (1 − p) ∗ M(Q1)

Q1 is generally more informative than Q2 [5, Theorem 1].

4. The value of the awareness to the unknown. Two scenarios
are demonstrated, and analyzed in this section; first we analyze the case when
the user does not know that the system is inaccessible (sub-section 4.1); second,
in contrast, when the user knows that the system is not accessible (sub-section
4.3).

4.1. Producing a uniformly distributed signal in a situation of

uncertainty – an example. We first illustrate the case by a using the ex-
ample of Q, an information structure for managing a firm’s inventory, that was
shown earlier in Sub-Section 2.1. Suppose the system produces a random signal
in a no-information situation. Table 4.1 exhibits the results for three levels of
accessibility. It is assumed that when the system is not accessible, a uniformly
distributed random signal is produced.
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Table 4.1. Receipt of a Uniformly Distributed Signal in Situations of Inaccessibility

Level of Accessibility p 100% 90% 80%

Information structure Q =

(

1 0
0 1

)

The weighted
information structure
Qi = pi ∗ Q + (1 − pi) ∗ N(Q)

Q1 =

(

1 0
0 1

)

Q2 =

(

0.95 0.05
0.05 0.95

)

Q2 =

(

0.9 0.1
0.1 0.9

)

The matrix of a priori
probabilities for the
states of nature

Π =

(

0.9 0
0 0.1

)

The payoff matrix U =

(

0 −5
−1 0

)

Optimal decision matrix
(A1 – do not order, A2 – order)

D =

(

1 0
0 1

)

D =

(

1 0
0 1

)

D =

(

1 0
0 1

)

expected payoff
Max

D

(trace(Π ∗ Qi ∗ D ∗ U)) 0 −0.07 −0.14

4.2. The value of a no-information signal in probabilistically ac-

cessible systems. Consider now two information systems with the same level
of accessibility, and identical performance when they are accessible. It is intu-
itively reasonable to expect that an information system that always produces a
no-information signal when it has ceased to be accessible would be generally more
informative than any “similar” system that does not produce a no-information
signal in situations of inaccessibility. This is proved in Theorem 1.
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Theorem 1.

1. Let Q be an information structure describing an information system. Let
S = {S1, . . . , Sn} be the set of states of nature of Q. Let Y = {Y1, . . . , Ym}
be the set of signals of Q.

2. Let Ym+1 be a no-information signal that is not a part of the set of signals
of Q. Let Q0 be an information structure describing an information system
with the addition of a no-information signal. Let S = {S1, . . . , Sn} be the
set of states of nature of Q0. Let Y0 = {Y1, . . . , Ym, Ym+1} be the set of
signals of Q0.

3. Let M(Q) be a structure that represents uncertainty. Let S be the set of its
states of nature and Y its set of signals.

∀ i, 1 ≤ i ≤ n ∀ k, 1 ≤ k ≤ n ∀ j, 1 ≤ j ≤ m, M(Q)i,j = M(Q)k,j = mj

M(Q) is an information structure whose rows are all identical, mj being
an element that appears in all the rows of the j column.

4. Let M0(Q) be the information structure M(Q) with the addition of a no-
information signal (column of zeros). Let S be the set of its states of nature
and Y0 its set of signals.

5. Let N0(Q) be a structure that represents a display of a no-information sig-
nal. Let S be the set of its states of nature and Y0 its set of signals.

N0(Q)i,j = 0 when 1 ≤ j ≤ m N0(Q)i,j = 1 when j = m + 1.

6. Let p be the accessibility of the system, 0 ≤ p ≤ 1

7. Let Q1 be a convex combination of Q0, M0(Q) and N0(Q)

Q1 = p ∗ Q0 + p1 ∗ M0(Q) + p2 ∗ N0(Q), 0 ≤ p1, 0 ≤ p2, p1 + p2 = 1 − p.

8. Let Q2 be a convex combination of Q0 and N0(Q)

Q2 = p ∗ Q0 + (1 − p) ∗ N0(Q).

Then Q2 is generally more informative than Q1.

The proof is shown in the appendix.
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Theorem 1 asserts that an information system that always produces a
no-information signal when the system or the data are not accessible is generally
more informative than any “similar” system that is accessible at an identical level
of accessibility, but does not produce a no-information signal when the system or
the data are not accessible. Consequently, it is more valuable for an information
system to indicate situations of inaccessibility to the user.

4.3. Producing a no-information signal – an example. Consider
the information structure Q of the previous example in a similar situation with
the only difference that there exists a no-information signal. Let Y3 be a signal
that does not belong to the set of signals Y . Y3 denotes that the system is not
functioning at the moment.

Let Q0 be an information structure representing the information system

with the addition of a no-information signal Y3. Q0 =

(

1 0 0
0 1 0

)

.

Q and Q0 are identical in terms of general informativeness [1]. Let us
now examine a number of examples of using the system by means of various data
configurations (the numerical examples are similar to those given in example
4.1, apart from the addition of a no-information signal). Table 4.3 shows that
the lower the level of accessibility, the lower the expected payoff provided from
using the information system. The table exhibits the results of three levels of
accessibility assuming that when the system is not accessible, a no-information
signal is produced.

Table 4.3. A Case of a No-information Signal in Situations of Inaccessibility

Level of Accessibility p 100% 90% 80%

Information structure Q =

�
1 0
0 1

�
The weighted infor-
mation structure Qi−0 =
pi ∗ Q0 + (1 − pi) ∗ N0(Q)

Q1−0 =

�
1 0 0
0 1 0

�
Q2−0 =

�
0.9 0 0.1
0 0.9 0.1

�
Q3−0 =

�
0.8 0 0.2
0 0.8 0.2

�
The matrix of a priori
probabilities for the
states of nature

Π =

�
0.9 0

0 0.1

�
The payoff matrix U =

�
0 −5

−1 0

�
Optimal decision matrix
(A1 – do not order,
A2 – order)

D =

0�1 0
0 1
1 0

1A D =

0�1 0
0 1
1 0

1A D =

0�1 0
0 1
1 0

1A
expected payoff
Max

D
(trace(Π ∗ Qi ∗ D ∗ U)) 0 −0.05 −0.1
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Figure 1 portrays a comparison between the expected payoffs as a function
of the accessibility level for an information system that produces a uniformly
distributed random signal in lack of information situations (as presented in Table
4.1), and a system that produces a no-information signal in such cases (Table
4.3). A comparison of the levels of general informativeness of the two systems at
identical accessibility levels indicates that the system producing a no-information
signal is generally more informative than the system producing a random signal.

Fig. 1. Comparison of expected payoff for information systems that related differently
to no-knowledge situations

5. Summary and Conclusions. The extension of the information
structure model by introducing structures to describe no-information situations
has enabled us to draw the following conclusions.

There is a direct relationship between the accessibility of the

system and the level of general informativeness. The higher the level of
accessibility of an information system, the more informative it is generally.

A no-information signal in situations of inaccessibility always

increases the level of general informativeness. An information system
that tells the user that it is not available at a certain moment is better for the
user than a similar system (in terms of the quality of its signaling) that does not
have this feature (Theorem 1).

5.1. Significance of the results. The value of an information system
as a function of the information system’s accessibility was analyzed here. Insofar
as system accessibility and data accessibility affect the level of system informa-
tiveness, the system configuration, which determines the level of accessibility, has



220 Gil Greenstein, Niv Ahituv

a direct impact on the quality of the informativeness of the system. Therefore, it
is advisable to indicate situations of inaccessibility to the user. If an information
system does not identify a situation of inaccessibility the benefit derived from it
is limited. This conforms to everyday intuitive solutions such as a flashing amber
traffic light, a computer that requests the user to wait for a response, a browser
that indicates that a requested site is not available, and the like.

5.2. A practical interpretation. Though this study displays a theo-
retical model, it has also some practical implications. At the stage of examining
technical alternatives for implemenring an information system, and particularly
when making a configuration decision (e.g., centralization vis-a-vis various forms
of decentralization), the level of accessibility of an information system has to
be estimated for each possible alternative. The expected level of accessibility
should be an additional criterion, because of its direct effect on the value of the
information.

In order to improve the possible benefits of an information system, the
designers should use a no-information signaling mechanism in inaccessibility situ-
ations. At the acceptance-testing stage, the users have to check that in situations
of inaccessibility the system does indeed produce a no-information signal. In an
evaluation process of several alternative information systems offered to an or-
ganization, decision makers must take into account the manner of operation in
situations of inaccessibility.

Appendix

Theorem 1.

1. Let Q be an information structure describing an information system. Let
S = {S1, . . . , Sn} be the set of states of nature of Q. Let Y = {Y1, . . . , Ym}
be the set of signals of Q.

2. Let Ym+1 be a no-information signal that is not a part of the set of signals
of Q. Let Q0 be an information structure describing an information system
with the addition of a no-information signal. Let S = {S1, . . . , Sn} be the
set of states of nature of Q0. Let Y0 = {Y1, . . . , Ym, Ym+1} be the set of
signals of Q0.

3. Let M(Q) be a structure that represents uncertainty. Let S be the set of its
states of nature and Y its set of signals.

∀ i, 1 ≤ i ≤ n ∀ k, 1 ≤ k ≤ n ∀ j, 1 ≤ j ≤ m, M(Q)i,j = M(Q)k,j = mj
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M(Q) is an information structure whose rows are all identical, mj being
an element that appears in all the rows of the j column.

4. Let M0(Q) be the information structure M(Q) with the addition of a no-
information signal (column of zeros). Let S be the set of its states of nature
and Y0 its set of signals.

5. Let N0(Q) be a structure that represents display of a no-information signal.
Let S be the set of its states of nature and Y0 its set of signals.

N0(Q)i,j = 0 when 1 ≤ j ≤ m N0(Q)i,j = 1 when j = m + 1.

6. Let p be the accessibility of the system, 0 ≤ p ≤ 1

7. Let Q1 be a convex combination of Q0, M0(Q) and N0(Q)

Q1 = p ∗ Q0 + p1 ∗ M0(Q) + p2 ∗ N0(Q), 0 ≤ p1, 0 ≤ p2, p1 + p2 = 1 − p.

8. Let Q2 be a convex combination of Q0 and N0(Q)

Q2 = p ∗ Q0 + (1 − p) ∗ N0(Q).

Then Q2 is generally more informative than Q1.

Before proving the theorem, a lemma is proved.

Lemma 1.1.

1. Let Q be an information structure describing an information system. Let
S = {S1, . . . , Sn} be the set of states of nature of Q. Let Y = {Y1, . . . , Ym}
be the set of signals of Q.

2. Let Ym+1 be a no-information signal that is not part of the set of signals of
Q. Let Q0 be an information structure describing an information system
with the addition of a no-information signal. Let S = {S1, . . . , Sn} be the
set of states of nature of Q0.

Let Y0 = {Y1, . . . , Ym, Ym+1} be the set of signals of Q0.

3. Let M(Q) be a structure representing uncertainty. Let S be its set of states
of nature and Y its set of signals.

∀ i, 1 ≤ i ≤ n ∀ k, 1 ≤ k ≤ n ∀ j, 1 ≤ j ≤ m, M(Q)i,j = M(Q)k,j = mj ,

M(Q) is an information structure with rows that are all identical, mj is an
element that appears in all the rows of the j column.
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4. Let N0(Q) be an information structure representing display of a no-information
signal. Let S be the set of its states of nature and Y0 its set of signals.

N0(Q)i,j = 0 when 1 ≤ j ≤ m

N0(Q)i,j = 1 when j = m + 1.

5. 0 ≤ p ≤ 1, p is the accessibility of the system.

6. Let Q1 be a convex combination of Q and M(Q).

Q1 = p ∗ Q + (1 − p) ∗ M(Q).

7. Let Q2 be a convex combination of Q0 and N0(Q).

Q2 = p ∗ Q0 + (1 − p) ∗ N0(Q).

Then, Q2 is generally more informative than Q1.

P r o o f o f L e m m a 1.1. The proof will use the second condition of
Blackwell’s Theorem in order to show that a specific stochastic matrix R, Q1 =
Q2 ∗ R, can be built. Hence, Q2 is generally more informative than Q1.

(1) Let R be a stochastic matrix with dimensions m + 1 × m.

R1i,j =







0, 1 ≤ i ≤ m, i 6= j
1, 1 ≤ i ≤ m, i = j
m, i = m + 1

R1 =













1 0 0 . . . 0
0 1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 1

m1 . . . . . . . . . . mm













.

(2) We observe Q3 = Q2 ∗ R

(3) Q2 ∗ R = [p ∗ Q0 + (1 − p) ∗ N0(Q)] ∗ R = p ∗ Q0 ∗ R + (1 − p) ∗ N0(Q) ∗ R

(4) ∀ i, 1 ≤ i ≤ n, ∀ j, 1 ≤ j ≤ m,

Q3i,j = P ∗
m+1
∑

k=1

Q0i,k ∗ Rk,j + (1 − p) ∗
m+1
∑

k=1

N0(Q)i,k ∗ Rk,j.

(5) We use: Q0i,n+1 = 0, Rk,j = 0, 1 ≤ k ≤ m, k 6= j, Rk,j = 1, 1 ≤ k ≤ m,
k = j.



The value of knowing that you do not know 223

(6) Thus, Q3i,j = p ∗ Q0i,j + (1 − p) ∗
∑

k=1

m + 1N0(Q)i,k ∗ Rk,j.

(7) We use Q0i,j = Qi,j, 1 ≤ i ≤ n

(8) and

N0(Q)i,j = 0, 1 ≤ j ≤ m, 1 ≤ i ≤ n
N0(Q)i,m+1 = 1, 1 ≤ i ≤ n
Rm+1,j = m, 1 ≤ j ≤ m

(9) Thus, Q3i,j = p ∗ Qi,j + (1 − p) ∗ 1 ∗ mj = p ∗ Qi,j + (1 − p) ∗ mj.

That is, for each term ∀ i, 1 ≤ i ≤ n, ∀ j, 1 ≤ j ≤ m.

(10) Q3i,j = Q1i,j.

(11) Thus, Q3 = Q1 = p ∗ Q + (1 − p) ∗ M(Q)

(12) Hence, Q2∗R = Q1. According to the 2nd condition of Blackwell’s Theorem,
Q2 is generally more informative than Q1. �

P r o o f o f T h e o r em 1.

(1) Denote Q3 = p∗Q+(1−p)∗M(Q). According to Lemma 1 of this theorem
(Theorem 1), Q2 is generally more informative than Q3.

(2) Denote Q4 = p ∗ Q0 + (1 − p) ∗ M0(Q). That is, Q3 with the addition of a
no-information signal. Q3 and Q4 have the same level of general informa-
tiveness [1]. Thus from the transitivity of the general informativeness ratio
it is clear that Q2 is generally more informative than Q4.

(3) Q1 = p ∗ Q0 + p1 ∗ M0(Q) + p2 ∗ N0(Q), 0 ≤ p1, 0 ≤ p2, p1 + p2 = 1 − p

(4) Q1 =
p1 + p2

p1 + p2

∗ (p ∗ Q0 + p1 ∗ M0(Q) + p2 ∗ N0(Q))

(5) Q1 =
p1

p1 + p2

∗(p∗Q0+(p1+p2)∗M0(Q))+
p2

p1 + p2

∗(p∗Q0+(p1+p2)∗N0(Q))

(6) Using p1 + p2 = 1 − p,

Q1 =
p1

p1 + p2

∗(p∗Q0 +(1−p)∗M0(Q))+
p2

p1 + p2

∗(p∗Q0 +(1−p)∗N0(Q))
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(7) Using Q2 = p∗Q0 +(1−p)∗N0(Q) and in (2) Q4 = p∗Q0+(1−p)∗M0(Q),
then

Q1 =
p1

p1 + p2

∗ Q2 +
p2

p1 + p2

∗ Q4

(8) Thus, (2) ⇒ Q2 is generally more informative than Q4. Hence, from Theo-
rem 1 in [5], it is concluded that Q2 is generally more informative than Q1,
which is a convex combination of Q2 and Q4. �
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