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Abstract. Over recent years, the research of attribute reduction for gen-

eral decision systems and, in particular, for consistent decision tables has

attracted great attention from the computer science community due to the

emerge of big data. It has been known that, for a consistent decision ta-

ble, we can derive a polynomial time complexity algorithm for �nding a

reduct. In addition, �nding redundant properties can also be done in poly-

nomial time. However, �nding all reduct sets in a consistent decision table

is a problem with exponential time complexity. In this paper, we study

complexity of the problem for �nding a certain class of reduct sets. In par-

ticular, we make use of a new concept of relative reduct in the consistent

decision table. We present two NP-complete problems related to the pro-

posed concept. These problems are related to the cardinality constraint and

the relative reduct set. On the basis of this result, we show that �nding a

reduct with the smallest cardinality cannot be done by an algorithm with

polynomial time complexity.

ACM Computing Classi�cation System (1998): I.5.2, I.2.6.
Key words: attribute reduction, NP-complete, complexity, consistent decision table, rough

set theory..



28 Phan Dang Khoa, J�anos Demetrovics, Vu Duc Thi, Pham Viet Anh

1. Introduction. Reduction of attribute set on decision tables is one of
the most important problems for data pre-processing in data mining and machine
learning [18, 2]. The primary objective of attribute reduction in an information
system is to remove redundant and unnecessary attributes in order to �nd a
reduct attribute set (known as a reduct) for data storage and query e�ciency.
Furthermore, this procedure also greatly helps to increase the performance of
knowledge extracting models, especially for big data.

Rough set theory (RST) was introduced by Zdzis law Pawlak [15] for data
analysis. The mathematical theory is considered as an e�ective method to �nd
reduct of decision systems. In the literature, there are a number of complexity
studies and algorithms based on RST and its variants to �nd attribute reductions
of decision systems over the last decades [10, 14, 17, 13, 3]. However, due to the
hardness of the problem, most of proposed algorithms are heuristic algorithms,
whose aim is to �nd one reduct to obtain a certain metric such as the best out-
of-sample accuracy for prediction models [18, 19, 4, 22]. In this paper, we are
interested in analyzing exact algorithms for the attribute reduction problem for
a class of reduct sets in a consistent decision table under a new concept called
relative reduct, for which we will introduce later.

On consistent decision systems, in recent years there have been a num-
ber of publications related to reduct of consistent decision systems according to
the relational database theory approach [7, 20]. In papers [12, 20], the authors
constructed an algorithm to �nd all reductive attributes of consistent decision
systems in polynomial time. However, many problems related attribute reduct
have more complex structure. In [11], the authors study equivalence properties
of reduct of consistent decision systems related to a Sperner-system. In [9], the
authors investigate the time complexity of algorithms for the inclusion problem
of families of relative reducts and minimal sets in a consistent decision table. In
paper [8], the authors proved that the problem of �nding all reducts has the expo-
nential time complexity in the cardinality of conditional attribute set. Therefore,
state-of-the-art algorithms for �nding all reducts using rough set theory might
only be e�ective on small and medium-sized datasets, they are not scalable with
big ones. We notice that inconsistent and incomplete decision systems have also
been considered in the literature [21].

In this paper, by using rough set theory and relational database theory,
we study the complexity for a class of problems related to attribute reduction
of consistent decision systems. In particular, we argue that checking reducible
property or redundancy of an attribute can be conducted in polynomial time.
With the help of a new notation of relative reduct, i.e, an attribute set contains
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a certain reduct, we introduce two problems and prove that under a cardinality
constraint they are NP-complete.

The rest of this paper is structured as follows. Section 2 reviews the
preliminaries of rough set and relational database theory. In Section 3 we present
some new complexity results related to attribute reduction problems. We conclude
the paper in Section 4.

2. Preliminaries. We note that the study of reductions for a consistent
decision table is closely related to the relational database theory. In this section,
for completeness, we review some basic concepts in the relational database theory
and rough set theory, which are used in our analysis. For more details of these
concepts, the reader is referred to [6, 7, 12, 20].

2.1. Relational Database Theory. This subsection brie�y reviews
some key notations of the relational data model including a relation, functional
dependency, f-family, and a Sperner system.

De�nition 1. Let R = {a1, ..., an} be a �nite and nonempty attribute set, and
D(ai) be the set of all values of attribute ai. We say that the set of tuples r =

{h1, . . . , hm} is a relation over R if every function hj : R→
⋃
ai∈R

D(ai), 1 ≤ j ≤

m, satis�es the condition hj(ai) ∈ D(ai) for all i = 1, . . . , n.

Let r = {h1, . . . , hm} be a relation over set R = {a1, . . . , an}. Functional
dependency over R is denoted by A → B where A,B are attribute sets and
A,B ⊆ R. Functional dependency satis�es the relation r over R if:(

(∀a ∈ A)
(
hi(a) = hj(a)

)
⇒ (∀b ∈ B)

(
hi(b) = hj(b)

))
for all hi, hj ∈ r. The set Fr =

{
(A,B) : A,B ⊆ R,A → B

}
is called a full

family of functional dependencies in r. Let P (R) be the power set of R. A family
F ⊆ P (R) × P (R) is called an f-family over R if and only if for all subsets of
attributes A,B,C,D ⊆ R the following properties hold:

(1) (A,A) ∈ F ;

(2) (A,B) ∈ F, (B,C) ∈ F ⇒ (A,C) ∈ F ;

(3) (A,B) ∈ F,A ⊆ C,D ⊆ B ⇒ (C,D) ∈ F ;

(4) (A,B) ∈ F, (C,D) ∈ F ⇒ (A ∪ C,B ∪D) ∈ F .
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We can see that Fr is an f-family over R. It has been known that if F is an
f-family over R, then there is a relation r such that Fr = F . We denote F+ as the
functional dependency set; as a result, F+ can be obtained from F by utilizing
the rules (1) - (4).

De�nition 2. A relation schema is de�ned as s = (R,F ), where R is an attribute
set and F is a functional dependency set de�ned on R. For any A ⊆ R, the closure
of A on s is A+ =

{
a : A→ {a} ∈ F+

}
. Similarly, A+

r =
{
a : A→ {a} ∈ Fr

}
is

called the closure of A on relation r

It is clear that A→ B ∈ F+ if and only if B ⊆ A+.

De�nition 3. A family K ⊆ P (R) is a Sperner system on R if for any A,B ∈
K implies A 6⊂ B. Let K be a Sperner system over R, we de�ne the set K−1 as
follows:

K−1 =
{
A ∈ R : (B ∈ K)⇒ (B 6⊂ A)

and (A ⊂ C)⇒ (∃B ∈ K)(B ⊆ C)
}

We say that K−1 is an anti-keys set.

We remark that K−1 is also a Sperner system. If K is a Sperner system
over R as the set of all minimal keys of relation r (or relation schema s) then K−1

is the set of subsets of R. It does not contain the element of K and is maximal
for this property. Let r be a relation on R and consider a ∈ R. We de�ne Kr

a as
follows:

Kr
a =

{
A ⊆ R : A→ {a} ∈ Fr,

6 ∃B :
(
B → {a} ∈ Fr

)
(B ⊂ A)

}
Then, Kr

a is called family of minimal sets of attribute a over relation r.

2.2. Rough Set Theory. The rough set theory is particularly concerned
about information systems [16]. It is a powerful tool to study attribute reduction
for data analysis and knowledge acquisition.

De�nition 4. An information system S is an order quadruple S = (U ;A;V ; f),
where U is a �nite and nonempty set of objects, called the universe; A is a �nite

and nonempty set of attributes; V =
⋃
a∈A

Va where Va is the set of values of at-

tribute a ∈ A; f : U × A → Va is the information function, such that for every
a ∈ A, u ∈ U : f(u, a) ∈ Va.
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For every u ∈ U and a ∈ A, we denote the value of attribute a of object
u as a(u) = f(u, a). If B = b1, ..., bk ⊆ A is subset of attributes, then the set
of bi(u) is denoted as B(u). Therefore, if u and y are two objects in U , then
B(u) = B(v) if and only if bi(u) = bi(v) for all i = 1, . . . , k.

De�nition 5. A decision table is an information system S = (U ;A;V ; f),
where C is the condition attribute set, D is the decision attribute set, A = C ∪D
and C ∩ D = ∅. A decision table S is consistent if the functional dependency
C → D is true; that is, for every u, v ∈ U if C(u) = C(v) then D(u) = D(v).
Otherwise, decision table S is inconsistent.

Without loss of generality, we assume that D consists of only one decision
attribute d. From now on, we can analyze a decision table of the from DS =
(U,C ∪ {d}, V, f). A formal de�nition for a reduct is

De�nition 6. For a consistent decision table DS = (U,C ∪ {d}, V, f) and an
attribute set B ⊆ C, B is called a reduct of C if:

(1) for every u, v ∈ U , if B(u) = B(v) then d(u) = d(v);

(2) for all E ⊂ B, there exist u, v ∈ U such that E(u) = E(v) and d(u) 6= d(v).

For convenience, we let PRED(C) denote the set of all reducts of C.

2.3. Vertex Cover Set and a Polynomial Time Algorithm for

Finding the Closure. In this subsection we present the de�nition of vertex
cover set [1], an algorithm for �nding the closure of attribute set [6, 8], and a
theorem about minimal sets of attribute over relation [8], which we will further
need for our complexity analysis in Section 3.

De�nition 7. (Vertex cover set) Given an undirected graph G = (V,E), where
V is the set of vertices and E is the set of edges, the set C ⊆ V is a vertex cover
of G if C ∩ {ai, aj} 6= ∅ for every edge (ai, aj) ∈ E.

In [6], we introduced an algorithm to �nd the closure of attribute set,
which can be summarized as follows:

We can see the time complexity of this algorithm is polynomial with re-
spect to n and m. Furthermore, it is clear that A→ B ∈ Fr in relation r if and
only if B ⊆ A+

r . Furthermore, let us recall the following result characterizing a
family of minimal sets, which was proved in [8].
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Algorithm 1: Finding the closure of attribute set [6, 8]

Input: r = {h1, . . . , hm} is a relation over R = {a1, . . . , an} and
A ⊆ R

Output: A+
r is the closure of A on relation r

1 Step 1: From r build Er = {Eij : 1 ≤ i < j ≤ m} where
Eij =

{
a ∈ R : hi(a) = hj(a)

}
.

2 Step 2: Build M = {B : ∃Eij , B = Eij}

3 Step 3: Set A+
r =

{ ⋂
B, if ∃B ∈M : A ⊆ B

R otherwise

Theorem 1. [8] Assume that DS =
(
U,C ∪ {d}, V, f

)
is a consistent decision

table, where C = {c1, . . . , cn} and U = {u1, . . . , um}. Consider the relation r =
{u1, . . . , um} de�ned on attribute set R = C ∪ {d}. We set Er = {Eij : 1 ≤ i <
j ≤ m} where Eij =

{
a ∈ R : a(ui) = a(uj)

}
and Md =

{
A ∈ Er : d /∈ A, 6

∃B ∈ Er : d /∈ B,A ⊂ B
}
. Then we have Md =

(
Kr

d

)−1
, where Kr

d is a family of
minimal sets of attribute d over relation r.

3. Complexity Analysis for Attribute Set Reduction Prob-

lems. In many applications, decision tables often contain inconsistent objects
which have the same values on the conditional attributes, but di�erent values
on the decision attribute. These decision tables are called inconsistent decision
tables. However, depending on the class of problems, we can convert the incon-
sistent decision table to a consistent decision table through a data pre-processing
step by removing inconsistent objects.

It can be seen that, in any decision table DS, if we do not allow two or
more rows to have the same values, then checking whether DS is a consistent
decision table can be done by a polynomial-time algorithm with respect to the
size of this table.

In this section, we analyze the computational complexity for two classes
of problems: 1) checking reducible/redundant property of an attribute, and 2)
the existence of a relative reduct of a decision table DS.

3.1. Polynomial Time Solvable for Attribute Checking Problems.

In this subsection, we investigate the complexity of two fundamental problems:
determining whether an attribute a is either a reduct attribute or redundant
attribute. We show that checking the property can be done in polynomial time.
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In [5], we propose an algorithm for �nding a reduct from a consistent
decision table. The statement of algorithm is given in Algorithm 2.

Algorithm 2: Finding a reduct over consistent decision table [5]

Input: DS =
(
U,C ∪ {d}, V, f

)
, where

POSc

(
{d}
)

= U,C = {c1, . . . , cn}, U = {u1, . . . , um}
Output: H is the reduct

1 Let consider relation r = {u1, . . . , um} on attribute set R = C ∪ {d}.
2 Step 1: Compute Er = {Eij : 1 ≤ i < j ≤} where

Eij =
{
a ∈ R : a(ui) = a(uj)

}
.

3 Step 2: From Er compute
Md = {A ∈ Er : d /∈ A, 6 ∃B ∈ Er : d /∈ B,A ⊂ B}.

4 Step 3: Set L(0) = C
5 Step i + 1: Set

L(i + 1) =

{
L(i)− ai+1, if 6 ∃A ∈Md : {L(i)− ai+1} ⊆ A

L(i) otherwise

6 Then we set H = L(n).

As proved in [5], the number of steps computing Er is bounded from
above by |U |2. The number of steps computing Md is less than |Er|2 and |Er| ≤
|U |(|U | − 1)

2
. Thus, we have the worst-case time complexity of Algorithm 2 is not

greater than O(n.m2). As a result, this algorithm has a polynomial complexity.
In the following example, we illustrate how to construct a reduct by using

Algorithm 2.

Example 1. Suppose we are given a consistent decision table DS1 =
(
U,C ∪

{d}, V, f
)
where U = {u1, u2, u3, u4, u5} and C = {a, b, c} as shown in Table 1.

We wish to �nd a reduct for this decision table.

We can see that E12 = c, E13 = ac,E14 = ab,E15 = ad,E23 = bcd,E24 =
d,E25 = b, E34 = ad,E35 = ab, and E45 = ac.

So we have Er = {c, ac, ab, ad, bcd, d, b, ad, ab, ac},
Md = {ac, ab} and
L(0) = abc.
Using Algorithm 2, it follows that:
L(1) = bc, L(2) = bc and L(3) = bc.
So we have H = {b, c} is a reduct of decision table DS1.
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Table 1. Consistent decision table DS1.

a b c d

u1 1 0 1 1
u2 0 1 1 0
u3 1 1 1 0
u4 1 0 0 0
u5 1 1 0 1

An e�cient algorithm for obtaining the set of all attribute reduction is
presented in Algorithm 3 [12].

Algorithm 3: Finding the set of all reduct attributes of C [12]

Input: DS =
(
U,C ∪ {d}, V, f

)
, where

POSc

(
{d}
)

= U,C = {c1, . . . , cn}, U = {u1, . . . , um}
Output: REAT (C) is the set of all reduct attributes of C

1 Let consider relation r = {u1, . . . , um} on attribute set R = C ∪ {d}.
2 Step 1: Compute Er = {Eij : 1 ≤ i < j ≤} where

Eij =
{
a ∈ R : a(ui) = a(uj)

}
.

3 Step 2: From Er compute
Md = {A ∈ Er : d /∈ A, 6 ∃B ∈ Er : d /∈ B,A ⊂ B}.

4 Step 3: Construct set N = R−
⋂

K∈Md

K

5 Step 4: Set REAT (C) = N − {d}.

We can see that the number of computational steps for Er is not greater
than |U |2 and for Md is not greater than |Er|2. Thus, this is a polynomial time
algorithm for the problem with respect to number of rows and columns of deci-
sion table DS. From the complexity analysis of Algorithm 3 we have following
corollaries.

Corollary 1. Given a consistent decision table DS =
(
U,C ∪ {d}, V, f

)
and

attribute a, let us consider the problem of checking whether a is a reduct attribute
or not. Then, the problem can be solved in polynomial time with respect to the
number of rows and columns of decision table DS.

A similar polynomial time solvable result for redundant attribute veri�-
cation is as follows:
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Table 2. Consistent decision table DS2.

a b c d e f g

u1 1 1 0 0 1 1 0
u2 1 1 1 1 0 0 1
u3 0 0 0 1 1 0 1
u4 0 1 1 0 0 1 0

Corollary 2. Given a consistent decision table DS =
(
U,C ∪ {d}, V, f

)
and at-

tribute a, let us consider the problem of checking whether a is a redundant attribute
or not. Then, the problem can be solved in polynomial time with respect to the
number of rows and columns of decision table DS.

In the following example, we illustrate how to �nd the set of all reduct
attributes by using Algorithm 3.

Example 2. Consider a consistent decision table DS2 =
(
U,C ∪{d}, V, f

)
where

U = {u1, u2, u3, u4} and C = {a, b, c, e, f, g} as shown in Table 2. We want to
identify all reduct attributes.

We can see that: E12 = ab,E13 = cf, E14 = begd,E23 = egd,E24 = bcf,
and E34 = a. Hence we have Er = {ab, cf, begd, egd, bcf, a}.

It is clear that Md = {begf, bcf, ab}.
Therefore, we have {begf} ∩ {bcf} ∩ {ab} = {b}.
It follows that N = R − {b} = {acefgd}; hence we get REAT (C) =

N − {d} = {acefg}. So �nally we have {a, c, e, f, g} is the set of all reduct
attributes of the decision table in our example.

We notice that Algorithm 2 allows us to �nd one reduct of any consistent
decision table DS in polynomial time. However �nding all reducts of DS is
exponential time. We have the following theorem.

Theorem 2. [8] Given a consistent decision table DS =
(
U,A = C ∪ {d}, V, f

)
,

�nding all reducts PRED(C) of DS is a problem which has exponential time
complexity by size of A.

In order to solve this problem, we need to show two things:

1) There is an exponential time algorithm for �nding PRED(C);

2) There is no algorithm for �nding PRED(C) in less than exponential time.
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We characterize the relationship between a Sperner systemK and (Kr
d)−1.

Lemma 1. Suppose that K is a Sperner system on C, then there exists a consis-
tent decision table DS =

(
U,C ∪ {d}, V, f

)
such that K = (Kr

d)−1.

P r o o f. Assume that K = {A1, . . . , Am}. We construct decision table
DS =

(
U,C ∪ {d}, V, f

)
by the following approach:

U = {u0, u1, . . . , um}, for every c ∈ C: c(u0) = 0 and d(u0) = 0. For
every i ∈ {1, . . . ,m} and c ∈ C, we set c(ui) = 0 if c ∈ Ai, otherwise c(ui) = i.
Set d(ui) = i. We have R = C ∪ {d}.

Set Er = {Eij : 1 ≤ i < j ≤ m}, where Eij =
{
a ∈ R : a(ui) = a(uj)

}
.

Let us de�ne Md = {A ∈ Er : d /∈ A, 6 ∃B ∈ Er : d /∈ B,A ⊂ B}. We can

see thatMd = {A1, A2, . . . , Am}. By applying Theorem 1, we haveMd =
(
Kr

d

)−1
.

It implies that K =
(
Kr

d

)−1
. The proof is complete. �

3.2. Two NP-Complete Problems. First we show that checking the
existence of following set with cardinality constraint is NP-complete.

Theorem 3. The following problem is NP-complete.
Given a Sperner system K on R = {a1, a2, . . . , an} and a positive integer

k ≤ n, let us determine whether there exists a set A ⊆ R such that |A| ≤ k (|A|
denotes the cardinality of set A) and for every B ∈ K: A 6⊂ B.

P r o o f. Select a set A randomly such that |A| ≤ k and A is not a
subset of each B ∈ K. We can see that the selection problem has polynomial
time complexity of n and m (where |K| = m). So we have an NP problem.

We consider the NP-complete problem in [1], i.e., the cardinality vertex
cover problem:

For a given undirected graph G = (V,E), where V is the set of vertices
and E is the set of edges, and an positive integer k, let us �nd a vertex cover set
whose cardinality is not greater than k.

We need to show how to convert this problem to our problem by a trans-
formation in polynomial time. Assume that G = (V,E) is an undirected graph
and k ≤ |A|. Let us denote R = V and P =

{
R \ {ai, aj} : (ai, aj) ∈ E

}
. It is

plain to see that P is a Sperner system on R.
Suppose that P = {B1, . . . , Bm}. If |A| ≤ k and A 6⊂ Bi,∀i = 1, . . . ,m,

then by the de�nition of P we have A ∪ {ai, aj} 6= ∅ for any (ai, aj) ∈ E. Hence,
A is a vertex cover set of G. Otherwise, if A is a vertex cover set of G then from
the de�nition of P and vertex cover set, we have A is not a subset of Bi, for every
i = 1, . . . ,m. It implies that A is not a subset of Bi (for every i = 1, . . . ,m) if
and only if A is a vertex cover set of G. The theorem is proved. �
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Now we introduce a new notion of reduction for a consistent decision table
DS. The de�nition of relative reduct is given as follows.

De�nition 8. Given a consistent decision table DS =
(
U,C ∪{d}, V, f

)
, a set B

is called relative reduct of DS if there exists a reduct set A such that A ⊆ B.

Example 3. Suppose we are given a consistent decision table DS3 =
(
U,C ∪

{d}, V, f
)
where U = {u1, u2, u3, u4, u5} and C = {a, b, c, e} as shown in Table 3.

We will �nd relative reducts for this decision table.

Table 3. Consistent decision table DS3.

a b c e d

u1 1 0 1 1 1
u2 0 1 1 0 0
u3 1 1 1 1 0
u4 1 0 0 0 0
u5 1 1 0 1 1

We can see that: E12 = c, E13 = ace,E14 = ab,E15 = aed,E23 =
bcd,E24 = ed,E25 = b, E34 = aed,E35 = abe, and E45 = ac. So we have:

Er = {c, ace, ab, aed, bcd, ed, b, aed, abe, ac};
Md = {ace, abe};
L(0) = {abce}.

Using Algorithm 2, it follows that:

L(1) = abc;

L(2) = bc;

and L(3) = bc;

So we have A = {bc} is a reduct of decision table DS3. Following De�nition 8, we
conclude that DS3 has two relative reducts with cardinality 3: B1 = {abc} and
B2 = {bce}.

Based on Lemma 1, we have an algorithm with polynomial time com-
plexity for �nding a consistent decision table from a Sperner-system K satisfying
K−1d = K. Therefore, when applying this result, we can derive the following
complexity result.



38 Phan Dang Khoa, J�anos Demetrovics, Vu Duc Thi, Pham Viet Anh

Theorem 4. The following problem is NP-complete.

Given a positive integer k (k ≤ |C|) and a consistent decision table DS =(
U,C ∪{d}, V, f

)
, let us determine whether there exists a relative reduct set A of

DS such |A| ≤ k.

P r o o f. We select A randomly such that |A| ≤ k. By using Algorithm 1,
we determine A → {d}. We know that A → {d} if and only if {d} ⊆ A+

r .
From Algorithm 1, this determination has polynomial time complexity. Hence,
the above problem is NP.

We select the problem in Theorem 3 as an NP-complete problem:

Given a Sperner system K on R = {a1, ..., an} and a positive integer k
(k ≤ n). Determining whether there exists a set A ⊆ R such that |A| ≤ k and for
any B (B ∈ K): A 6⊂ B.

We prove that this problem can be converted into our problem by a trans-
formation with polynomial time.

De�ne K = {B1, . . . , Bm}, we construct the decision table DS =
(
U,C ∪

{d}, V, f
)
as follows:

U = {u0, u1, . . . , um} for every c ∈ C: c(u0) = 0 and d(u0) = 0. For every
i, j ∈ {1, . . . ,m} and c ∈ C, we set c(ui) = 0 if c ∈ Bi; otherwise, let c(ui) = i.
Set d(ui) = i and R = C ∪ {d}.

From Lemma 1, we can obtain an algorithm with polynomial time com-
plexity for �nding a consistent decision table from a given Sperner system K such
that K−1d = K. We consider two cases:

If |A| ≤ k and A 6⊂ Bi, for i = 1, . . . ,m, then from the de�nition of anti-
keys set, Sperner system, Lemma 1, and the de�nition of relative reduct, we can
see that A must contain at least one reduct of decision table DS. It follows that
A is a relative reduct of DS. Otherwise, if A is a relative reduct. From de�nitions
of relative reduct, anti-keys set and Lemma 1, we can claim that A is not a subset
of Bi (for every i = 1, . . . ,m).

From the above analysis, we deduce that A is not a subset of Bi (for every
i = 1, . . . ,m) if and only if A is a relative reduct of decision table DS, which
proves the theorem. �

By using above results, we have the following corollary for �nding the
smallest reduct set problem.

Corollary 3. For a given consistent decision table DS =
(
U,C∪{d}, V, f

)
, if NP

6= P then there is no polynomial time algorithm to �nd a reduct set for a decision
table DS with the smallest size.
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It is well-known that if the problem class identi�ed by the deterministic
Turing machine is P and the problem class identi�ed by the non-deterministic
Turing machine is NP, then the NP 6= P problem is one of prominent outstanding
unsolved problems in computer science. However, to the best of our knowledge,
up to now, it is widely believed that P and NP are distinct classes.

4. Conclusions. We have investigated the computational complexity
for attribute reduction-based problems by making use of rough set theory and
relational database theory. We have shown that the problems of checking whether
an attribute is reducible or redundant can be solved in polynomial time. We have
introduced a de�nition for a relative reduct set, and then presented two NP-
complete problems related to cardinality of a relative reduct set.
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