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Abstract. The image denoising process is of great importance when ana-
lyzing images and their visualization. A major problem is finding the bound-
ary between clearing the noise and keeping the salient features in the images.
This paper proposes adaptive subband threshold image denoising in a shear-
let domain based on the Shannon entropy. The method does not suppose a
specific type of noise, it does not require data for its spectrum, nor does it
lead to highly complex computational algorithms.

1. Introduction. A common problem in the field of computer vision and
image processing is noise detection and its reduction in digital images. Medical
images are a special class of images containing structural and functional informa-
tion on anatomical organs. They are intended for examining their structure, as
well as for diagnosing various diseases. The main source for obtaining medical
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images are the non-invasive diagnostic imaging techniques: Computed Tomography
(CT ), Ultrasonography, Magnetic Resonance Imaging (MRI ), Positron Emission
Tomography (PET ), Single Photon Emission Computed Tomography (SPECT ),
Optical Coherence Tomography (OCT ), etc. Each of these medical imaging de-
vices is affected by different types of noise. Obtaining good-quality images is
essential for reliable clinical interpretation.

The main types of noise that exist in medical visualization are:

• Gaussian (CT [16]);

• Poisson (X-ray, PET and SPECT [10, 9]);

• Rician (MRI and Ultrasonography [19]);

• Speckle (OCT [4]).

When modelling noise in images with high signal-noise ratio, Gaussian
distribution is typically used due to the central limit theorem of Lyapunov. But
medical images are mainly low-contrast and the modeling of statistical data dis-
tribution is one of the most important stages in noise reduction methods. For
example, the variance of Gaussian noise is constant and the variance of Poisson
noise is proportional to the average noise, whereas for Rician noise this depen-
dence is nonlinear [9, 21]. Besides, the noise type in medical images may be
complex, non-stationary, etc., which further complicates the situation.

A number of methods have been developed in order to solve the basic
problem of image reconstruction from noisy data, in particular, those based on
multiscale transformations [13, 23, 15].

The shearlet is a new multidimensional and multiscale transform, which
is optimally efficient in representing images containing edges. Shearlet systems
are superior to the rest of the functions generating multiscale transformations, in
terms of orientation, spatial localization and image approximation.

The present work proposes a method for denoising medical images using
a Shearlet Transform based on the Shannon entropy. To assess the quality of
the denoising images, the following functions are used: PSNR (Peak Signal-to-
Noise Ratio) and SSIM (Structural Similarity Index).

2. Related theories.
2.1. Minimax and wavelet thresholding estimator. The additive

noise model is most commonly used in the task of recovering signal f0 with limited
power (f0 ∈ L2 (R)) from noisy data f and has the representation f = f0 + n,
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where n is the noise. It must be observed that the multiplicative noise components
can be considered as additive in relation to the logarithmic scale.

The noise in the signal is modeled by a random vector with a certain
probability distribution, which should be known in advance. In many known
models it is supposed that n is white Gaussian noise with a standard deviation σ.

The signal f0 is evaluated by transforming noisy data f through the so-
called decision operator D, and the corresponding evaluation is f̃0 = Df. The
operator D should minimize the error of assessment f0 −Df measured by a loss
function.

Usually a mean square distance is used and the loss function is selected
as the square of L2-norm. Then the estimator risk f̃0 is given by the Mean
Square Error (MSE) calculated in terms of the noise probability distribution:
r (D, f0) = E

{
‖f0 −Df‖2

}
, where E is a mathematical expectation.

In practice, we may have some prior information concerning the signal,
for example, it may belong to a set F0 ⊂ L2 (R), but, as for complex signals, we
should not expect to know their probability distribution. This means that the
expected risk over F0 cannot be calculated.

With the minimax estimator for controlling the risk for each signal f0 ∈ F0,
it is necessary to minimize the maximum risk r (D,F0) = sup

f0∈F0

E
{
‖f0 −Df‖2

}
and the minimax risk is r (F0) = inf

D
r(D,F0). Applications usually look for a

decision operator D, which is calculated easily and r(D,F0) is close to r(F0) [17].
For uniformly regular and partially regular signals this evaluation is easily

achieved due to the sparsity properties of wavelets, using the so-called wavelet
threshold estimator. Moreover, the invariance of the white Gaussian noise on
orthogonal transformations makes it preferable in most models for extracting
information from noisy data.

The computation of the wavelet thresholding estimator can be described
in the following manner [5]. Let {ψj,m} be an orthogonal wavelet basis in L2 (R)

and f =
∑
j,m

〈f, ψj,m〉 ψj,m.

Applying a hard wavelet threshold algorithm leads to reducing to zero all
wavelet coefficients whose absolute values are not higher than a certain threshold
value T = T (σ), where the standard noise deviation σ is estimated by the signal f .
The other coefficients do not change and the coefficients obtained in this way are
denoted by cj,m. The estimator f̃0 is calculated using Df =

∑
j,m

cj,m ψj,m.

An alternative threshold method is the soft threshold value algorithm,
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where the new wavelet coefficients are determined by a shrinkage function [4]:

shr(c) = sgn(c) max(|c| − T, 0).

The properties of these thresholding estimators remain valid for nonortho-
gonal Riesz bases and frames. The frame redundancy leads to a lower risk, which
makes it preferable in applications. What is more, these methods are summa-
rized for some improved multiscale transformations based on: curvelets, bandelets,
shearles, etc. [23, 6].

2.2. Entropy and frames. In the information theory, entropy is used to
quantitatively measure the information content of a random source [22]. The zero
entropy corresponds to the absence of information, while its higher value reflects
the increased informativeness of the relevant data. By information in this paper
we mean the noise level in the image concerned. In the signal processing theory,
using the entropy properties for the signal x ∈ L2 (R) represented by the sequence
of its coefficients {xi}i∈I on an orthogonal basis or, more generally, on the frame
in this Hilbert space, the following equality is valid: E (x) =

∑
i∈I

E (xi), where

E (xi) = −
∣∣x0i ∣∣2 · log2

(∣∣x0i ∣∣2), x0i = xi ·

(∑
i∈I

x2
i

)−0,5
. Therefore, the Shannon

entropy for this signal is given by − E (x) = −
∑
i∈I

∣∣x0i ∣∣2 · log2

(∣∣x0i ∣∣2) [3, 20].

2.3. Shearlet transform. For efficient representation of multidimen-
sional data, the Shearlet transform (ST) is used. The Continuous Shearlet-system
is generated using the following operators [15]:

• scaling DAa , where Aa = diag
(
a,
√
a
)
, a ∈ R+ is the matrix of the

parabolic scaling;

• shearing (ensures the anisotropy of the transform) DSs , s ∈ R , where

Ss =

(
1 s
0 1

)
is the shear matrix;

• translating Tτ , where Tτφ (t) = φ (t− τ).

The continuous shearlet system for the function ψ ∈ L2

(
R2
)
is the set{

ψa,s,τ (t)=TτDSsDAaψ(t)=a−3/4ψ(A−1a S−1s (t− τ)); a ∈ R+, s ∈ R, τ ∈ R2
}
, and

the associated with it ST of the function f ∈ L2(R
2) is STψf(a, s, τ) = 〈f, ψa,s,τ 〉.
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There are various algorithms for the implementation of the respective
Discrete Shearlet Transform (DST) [15]. The present paper uses the algorithm
Fast Finite Shearlet Transform (FFST ) proposed by S. Häuser and implemented
on the basis of cone-adapted continuous shearlet systems [12]. For the construc-
tion of the classical wavelet, the Meyer function is used as a scaling function [18]
and the proposed algorithm is based on Fast Discrete Fourier Transforms. The
resulting discrete shearlet system {ψκ

j,k,m
(ω)} forms a Parseval frame of the finite

Euclidean space, a subspace of L2

(
R2
)
, which provides the construction of the

Inverse Discrete Shearlet Transform (IDST).

3. Proposed method. Wavelet representations are non-optimal in
case of piecewise regular multidimensional functions and in this situation the
wavelet thresholding estimator does not provide a minimax risk. It has been
shown that a denoising estimator based on the thresholding of shearlet coefficients
essentially possesses the minimax optimality for images with edges [11, 7].

Noise in medical images is in effect too complicated to describe in an
absolutely correct way by a given model of statistical presentation of unknown
data. Motivated by the complicated conditions of noise in medical images, O. Ti-
schenko et al. [24] and A. Borsdorf et al. [2] proposed a denoising method by
wavelet thresholding based on the correlation between the two CT medical images
containing almost identical information. The basic idea is that, in contrast to the
structural information, noises in these images are not in correlation with the
passage of time.

3.1. Entropy-based shearlet thresholding. The present paper con-
siders the generalized model f = F (f0, n), where f and f0 are respectively the
noisy image and the reconstructed (denoised) image, n is the noise component
and the function F describes the relation between the two images. It does not use
certain statistics of the random variable n. The reduction of the noise component
is performed in the frequency domain, using a DST.

The proposed shearlet thresholding comprises the following steps:

• an adapted selection of the maximum scale;

• shearlet decomposition;

• determining the adapted thresholding rule;

• computing the affine thresholding estimator;

• reconstructing the denoised image.
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The adapted choice in this algorithm is based on qualitative assessment
obtained by the criterion of the relative change (rate of change) of the Shannon

entropy –
dE

Ej
=
|Ej+1 − Ej |
|Ej |

, where Ej is the entropy at the jth level of the

decomposition of the image [1]. CT images of different groups of anatomical
organs have been used as surveyed medical images.

The test image f is subjected to FFST for all permitted scales. The
criterion for the selection of the relevant scale ja adapted to the image is deter-
mined by the dependence of the entropy change rate on the level of the shearlet
decomposition. The calculation of the shearlet coefficients is performed in terms
of the frame Φ =

{
ψκj,k,m

}
, j = 0, 1, . . . , ja , i. e.,

〈
f, ψκj,k,m

〉
.

The rule for determining the threshold criterion in the algorithm is based

on the change of
dE

Ei
(j) , (i = 1, 2, ... ; j = 0, 1, ..., ja) along an indicative graded

scale of threshold values. In accordance with the determined threshold Tj , thresh-
old processing is applied to all shearlet coefficients of this scale, with the exception
of those with the lowest frequency energy (κ = 0). The quality of the noise re-
duction in the image directly depends on the choice of the threshold value. The
low threshold keeps the background in the coefficients and its high values lead to
the loss of coefficients containing structural information.

The resultant affine shearlet thresholding estimator of f0 in the Φ frame
has the representation Df =

∑
κ,j,k,m

cκj,k,m ψ
κ
j,k,m. The image f0 itself is recon-

structed by IDST using the coefficients cκj,k,m.
3.2. Experimental results. In order to conduct the study and the

analysis of the proposed image denoising algorithm, CT images of four groups of
anatomical organs have been used: Head, Spine, Knee and Cardiac. Ten slides
have been picked at random from a randomly selected subfolder for each study.
The dimensions of the medical images are 1024× 1024 and the output format is
DICOM (Digital Image and Communications in Medicine). The images have been
obtained by a Siemens CT scanners—Somatom Definition and Somatom Spirit,
without any additional processing. The proposed image denoising algorithm based
on ST is a program implemented in Matlab using the additional package FFST.

In order to evaluate the scale levels of decomposition, the images are
subjected to FFST, up to the maximum possible level of decomposition. The
resulting average results of the calculation of the relative entropy change for the
corresponding scale levels are represented in the graphs in Fig. 1.

Therefore, for all groups of studied organs, the entropy change rate under-
goes a qualitative change on the third level of the scale. This can be considered
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Fig. 1. The dependence of the relative entropy change rate on the level of decomposition

as an indicator for changes in the type of the removed information, which gives
grounds to choose ja = 3. Using higher scale levels will lead to image smoothing
and, respectively, to loss of some local peculiarities.

The choice of the adapted threshold Tj , (j = 0, 1, 2, 3) is determined on

the basis of the dependence of
dE

Ei
(j) on an eight-grade scale and a step unit.

The graph of this dependence for j = 3 is given in Fig. 2. Practically, there
is no point in choosing a threshold value greater than three, because the rate of
entropy change after the third scale can be assumed to be equal to zero.

4. Results and comments.
4.1. Test images. Usually, as a performance indicator for the algorithms

for noise reduction, a standard peak signal-to-noise ratio is used. It is measured

in decibels and is defined by PSNR = 20 lg
255 ·N
‖f − f0‖F

, where ‖ • ‖F is the

Frobenius norm. Standard Lena and Barbara images noised by different levels
of Rician noise are used as test images to perform a comparative analysis of the
proposed algorithm and other denoising methods.

Fig. 3 shows the results obtained with the proposed method for the two
test images noised with 5% Rician noise.

The results of the comparative analysis for the given method with Classical
Shearlet Algorithm and Shearlet-MOGA [8] for different levels of Rician noise are
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Fig. 2. The dependence of the relative entropy change rate on the threshold value

Fig. 3. Results for 5% Rician Noise
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presented in Table 1. The data obtained show that our algorithm gives higher
values of PSNR in more than 83% of the cases.

Table 1. Results for a Different Noise Level and Different Algorithm

PSNR
Image σ [%] Shearlet Shearlet-MOGA Proposed algorithm
Lena 10 34.37 35.13 33.49

20 31.80 33.12 32.00
30 29.23 30.09 31.64

Barbara 10 33.17 33.11 34.10
20 29.42 29.30 32.72
30 26.33 27.54 31.44

4.2. Real medical images. The developed algorithm for noise reduction
is also applied to real computer tomography images from the anatomic groups
mentioned in section 3.2. In addition, the metric function SSIM is used in order
to assess the quality of the denoised images. Unlike PSNR, this index is compatible
with human visual perception. SSIM is defined as follows: SSIM = [l(f, f0)]

α ·
[c(f, f0)]

β · [s(f, f0)]γ , where l(f, f0), c(f, f0) and s(f, f0) are respectively lumi-
nance, contrast and structural comparison functions. The positive constants α, β
and γ are used to weigh each comparison function.

Fig. 4 and Fig. 5 show one representative of each studied group of anatom-
ical organs: an input image (corrupted with noise), the same image after applying
the proposed method (denoised), the error between the two images and the cor-
responding values of the functions PSNR and SSIM.

The results show that the proposed algorithm can effectively reduce the
noise in CT images while retaining the relevant structural information.

5. Conclusion. This article proposes a method for constructing an
affine shearlet thresholding estimator, which does not require a concrete noise
model in the algorithm for reducing image noise. It shows its possibility for
adaptation to specific medical images databases through the Shannon entropy.
Another advantage, in comparison with some shearlet-based thresholding meth-
ods, is the low computational value of the algorithm due to averaging calculations
in the different frequency bands. This method can be used as a preliminary step
in solving some tasks related to classification and recognition in large medical
databases.
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Fig. 4. The results of the proposed image denoising method (Head, Spine)

Fig. 5. The results of the proposed image denoising method (Knee, Cardiac)
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