
Serdica J. Computing 1 (2007), 267–278

TRANSPARENT SCHEDULING OF COMPOSITE WEB

SERVICES*

Dmytro Dyachuk, Ralph Deters

Abstract. Composite Web Services (CWS) aggregate multiple Web Ser-
vices in one logical unit to accomplish a complex task (e.g. business process).
This aggregation is achieved by defining a workflow that orchestrates the
underlying Web Services in a manner consistent with the desired functiona-
lity. Since CWS can aggregate atomic and other CWS they foster the
development of service layers and reuse of already existing functionality. An
important issue in the deployment of services is their run-time performance
under various loads. Due to the complex interactions of the underlying
services, a CWS they can exhibit problematic and often difficult to predict
behaviours in overload situations. This paper focuses on the use of request
scheduling for improving CWS performance in overload situations. Different
scheduling policies are investigated in regards to their effectiveness in helping
with bulk arrivals.

1. Introduction. Well defined, loosely coupled services are the basic
building blocks of the service-oriented (SO) design/integration paradigm [1].

ACM Computing Classification System (1998): H.3.5; F.2.2.
Key words: Web Services, Composite Web Service, LWKR, SJF, Scheduling, Admission

Control.

*The paper has been presented at the International Conference Pioneers of Bulgarian
Mathematics, Dedicated to Nikola Obreshkoff and Lubomir Tschakaloff, Sofia, July, 2006.



268 Dmytro Dyachuk, Ralph Deters

Services are computational elements that expose functionality in a platform
independent manner and can be described, published, discovered, orchestrated
and consumed across language, platform and organizational borders. While
service-orientation (SO) can be achieved using different technologies, Web Ser-
vices (WS) is the most commonly used one due to the standardization efforts and
the available tools/infrastructure.

Using WS it is fairly easy to expose existing applications/resources and
combine them into novel services. However, the ease with which legacy systems
can be aggregated/orchestrated, leads to the questions of how the new Composite
Web Service (CWS) perform in overload situations.

This paper focuses on the use of request scheduling and admission control
as mechanisms for improving CWS performance in overload situations. Two
scheduling policies namely Shortest Job First (SJF) and Least Work Remaining
(LWKR) are investigated in regards to their effectiveness in helping with bulk
arrivals.

2. Overload behaviors. Web Services are most often used to expose
some already existing legacy functionality (e.g. transactional database). If
service providers do not share resources (e.g. no two providers expose the same
database), than every service provider can be modeled as a separate service. If
these providers are capable of handling multiple requests simultaneously, then
each incoming request must be handled by a separate thread. Since each service
has a finite amount of resources it can only serve a certain number of requests
simultaneously (actual number depends on the job sizes of the requests). Fig. 1
shows the (simplified) behavior of services under various loads.

Fig. 1. Service behavior under various loads



Transparent Scheduling of Composite Web Services 269

If a service is gradually exposed to an ever-increasing number of service
requests three distinct stages, namely underload, saturation and overload can be
observed. In the beginning the service experiences a load that is below its capacity
(underload) and consequently it is not fully utilized and when the number of
requests is increased the throughput (number of completed jobs per time unit)
increases. As the rate of incoming requests continues to increase, the server will
reach its saturation point (peak load). This marks the point where the server
is fully utilized and operating at its full capacity. The saturation point marks
also the highest possible throughput. Further increases of the request arrival rate
leads to an overload and ultimately the thrashing effect [2]. Thrashing occurs
either as a result of an overload of physical resources (resource contention) like
processor or memory or as a result of locking (data contention).

Thrashing is particularly problematic in workflows since the throughput
of the flow in the network is equal to the throughput of the “slowest” intersection.
Consequently trashing of one service will therefore negatively impact the perfor-
mance of the CWS.

3. Adaptive load control and scheduling. Since transient overload
situations lead to a decline in service throughput, it is important to avoid them.
Heiss and Wagner [2] proposed the use of adaptive load control as a means
for preventing overloads, by first determining the maximum number of parallel
requests (e.g. maximum number of simultaneous consumers) and then buffering/
queuing new requests once the saturation point has been reached. The impact
of this approach can be seen in Fig. 1. The darker curve (circles) shows the
characteristic three phases an uncontrolled server can experience, underload,
saturation and overload. Using an admission control (grey, triangles), the thra-
shing is avoided due to the limiting the number of concurrent threads and buffe-
ring/queuing of requests above peak load.

3.1. Admission control for web services. Adding admission control
to an already existing service (e.g. WS, CWS) can be achieved by use of the
proxy pattern [3]–[7]. As shown in Fig. 2, a proxy that shields/hides the original
provider enables the introduction of a transparent admission control.

Fig. 2. Transparent admission control Fig. 3. Transparent scheduling



270 Dmytro Dyachuk, Ralph Deters

The role of the proxy is to monitor the rate at which consumers issue
requests and to prevent overloading. When the request rate exceeds the capacity
of the provider, a FIFO queue is used to buffer the excess requests. Transparent
admission control is an effective approach for handling requests bursts [5, 8],
especially if the requests impose similar loads on the service. However, as soon
as the job size (impact on service) of requests varies, a FIFO queue is no longer
sufficient and reordering (scheduling) is required to ensure that the service is
neither overloaded nor underutilized.

3.2. Scheduling of requests. Since SO middleware (e.g. Web Services)
tend to foster declarative communication styles (e.g. SOAP[9]), it is fairly easy
to analyze the service bound traffic, identify the request and estimate the impact
each request will have on the service provider (job size). This in turn enables
re-ordering (scheduling) of the service requests. Scheduling of requests (Fig. 3)
opens a broad spectrum of possibilities, like maximizing service performance in
terms of interactions per time unit and/or minimizing the variance of service
response times, etc.

For an atomic (non composite) service SJF (Shortest Job First) scheduling
is sufficient as a means for optimizing overall throughput. SJF is a scheduling
policy which minimizes the response time of light requests, at the expense of
the heavier ones. All incoming service calls are put in a waiting queue and are
executed in the order of their size as shown in Fig. 3. Smith [10] proved that SJF is
the best scheduling policy for maximizing the throughput if accurate information
on job sizes is available.

3.3. Scheduling & composite web services (CWS). Scheduling of
CWS requests can be done on a system (workflow/CWS) or component (service)
level. While system-level scheduling treats the CWS as an atomic entity and thus
reorders the requests prior to invoking the workflow, component-level scheduling
focuses on scheduling the sub-requests for each service and can adjust to changes
during the execution of the workflow. In this paper only Composite Web Services
composed according to the Sequence pattern [11] with a static structure and
known job-size are considered.

Since system-level scheduling treats the CWS as one component, SJF is
suitable. SJF reorders the incoming requests according to their execution time,
by placing the shortest requests in the beginning of the queue, while the largest
are put at the end. The execution time for a CWS request is the sum of the times
needed for processing the sub-requests on each service.

In component-level scheduling a separate scheduler is placed in front
of each service resulting in a multi-step scheduling. In case the component



Transparent Scheduling of Composite Web Services 271

schedulers can only estimate the size of the sub-request assigned to them, SJF
should be used. However, if each component scheduler can evaluate the size of the
remaining work in the workflow or the mentioned above information can be shared
among all the schedulers, LWKR (Least Work Remaining) can be used. LWKR
evaluates the total cost of all remaining sub-request and assigns the priorities
according to the remaining work. Since LWKR scheduling is performed in every
component scheduler, the costs of scheduling are higher but at the same time the
scheduling can be adapted better to unexpected outcomes of processing requests.

Fig. 4. System-level scheduling Fig. 5. Component-level scheduling

4. Experiments. To test if thrashing can also be observed when
lightweight services are deployed a simple WS named “echo” was developed (using
Axis [12]) and tested under various loads. The service “echo” contains a single
method that expects an array of 200 integers (ranging between 0 and 5) as input
and returns an array of 200 integers consisting of the corresponding Fibonacci
numbers. Each experiment run lasts about one hour. The clients are sending
requests at a rate varying from ten requests per second to eighty five requests per
second. The collected data includes the number of page faults per second, CPU
utilization, number of threads on server, amount of memory used by application
server and the number of requests being handled concurrently.

The throughput chart in Fig. 6.a shows that the “echo” service can also
experience thrashing. The throughput of the service grows proportionally with
the request rate, until the service is overloaded. After the request rate exceeds
sixty five, the growth slows down since the service entered its saturation phase.
Further load increases cause a steep drop in the throughput of the system since
it becomes overloaded. The same can be observed in the response time diagram
in Fig. 6.d. While the service is in an underload phase the execution time of the
requests is relatively constant (variation is in the range of 34–38 milliseconds).
However, it starts increasing as soon as the system becomes saturated. The
values rise from 93 ms to 1 s, when the load reaches 60–70 requests per second.
In the overload phase the service response time jumps up to 11–30 seconds (a
1000 times increase compared to underload). Each test is executed for a limited
period of time. The experiments with overload cases are lasting one minute each,
indicating the heavy influence of even short-lived heavy loads (bursts). The charts



272 Dmytro Dyachuk, Ralph Deters

in Figs 6.b and 6.c depict the load on the main resources utilized by this service
indicating that parsing introduces a heavy load on CPU and memory.

Fig. 6.a. Throughput Fig. 6.b. CPU Utilization

Fig. 6.c. Page faults Fig. 6.d. Response time

As can be seen the in the underload and saturation phases, utilization of
the CPU is proportional to the load created by the clients while memory usage
stays constant. As the load reaches its peak value, the memory consumption
starts to increase drastically, which leads to a high page fault rate. Meanwhile
the CPU consumption drops, since threads are waiting for memory operations to
be competed. This causes delays in executing the jobs and as the new requests
are arriving an accumulation of the jobs in the service begins that leads to a
vicious circle of decreasing job execution and increased job accumulation.

4.1. Simulation of web service. Studying the impacts of overloads
(e.g. bursts) on CWS leads to the problem of running multiple services in a



Transparent Scheduling of Composite Web Services 273

controlled environment which is very resource intensive. Simulation of services
offers a less resource intensive alternative for studying the behavior of CWS and
was consequently chosen in this research. Using the simulation tool AnyLogic [13],
a model that captures the behaviors of WS and CWS was developed [5]. The
previous experiments showed that thrashing appears not only in WS running a
transactional database at the backend, but also in the standalone computation
bound WS as well. Thrashing in the “echo” service originates from the parsing,
which is mandatory part for each WS. Therefore all the WS without admission
control will experience the thrashing effect if the loads exceed certain limits.

To calibrate the simulation the WS “echo” from the previously described
experiment was used. The WS model contains two main resources CPU and
memory, governed by PS and tries to accurately describe the observed behavior
(e.g. page faults). The model has been designed to exhibit the same trashing
effects that have been observed in the experiments. Figs 7.a and 7.b present a
comparison of the simulated and observed Axis WS behavior indicating a close
match.

Fig. 7.a. Model and echo service response

time

Fig. 7.b. Model and echo service

throughput

4.2. Scheduling of CWS. After ensuring that the simulated “echo”
service demonstrates the same behavior as the Axis WS, experiments with simu-
lated CWS were possible. Three WS of identical capacity were aggregated (sequ-
ence workflow pattern) into one CWS. Invocation of the CWS leads to the
sequential invocation of Service 1, Service 2 and finally Service 3. To simplify
the simulation the costs for orchestration are assumed to be zero. Therefore the
time between receiving a response from a prior service and sending a request to a
next service is neglected. The upper limit on the number of the concurrent jobs
per service is set to 10.

The job-size of the client request for the CWS exponentially distributed



274 Dmytro Dyachuk, Ralph Deters

with an average at 340 ms. A high service request rate (50 requests/sec) is
alternated with a low request rate (2 requests/sec) (Fig. 8). The duration of the
low load is 480 seconds and 20 seconds for a high load.

4.3. Impact of Scheduling on CWS. The services without admission
control are “open” to the burst arrivals. As a result of the high load period
the requests get accumulated at Service 1. Consequently the high level of the
concurrently executed threads causes the thrashing effect, which results in a
low throughput with average value 4-6 responses per second (Fig. 8.a). Please
note that the throughput of the first service is the arrival rate of the second
service. Since the second service has an identical capacity, it is not overloaded
and consequently its throughput mirrors the arrival rate. The same situation is
observed with the third service. Hence CWS and Service 1 throughputs had the
same value (Fig. 8.e). The accumulation of the jobs in Service1, caused by the
absence of the admission control mechanisms results in the increase of its service
time. The service time grows with the number of jobs and as soon as the arrived
jobs start departing the response time decreases (Fig 8.c).

With LWKR due to the limitation on the number of concurrent jobs the
service response time has a more uniform nature (Fig. 8.d) and peaks disappear
faster.

Placing a LWKR scheduling proxy in front of Service 1 decreases the
number of threads (handling requests concurrently) to 10. As a result the through-
put goes up to 10–12 responses per second (Fig. 8.b). Since Service 2 and Service
3 have the same capacity as Service 1, their and CWS’s throughput are very
similar (Fig. 8.f).

As Service 1 is the first service in the chain, it is exposed to the highest
load and its response time has the highest value. As a result it has the biggest
impact on the response time of the workflow. The charts in Figs 8.g and 8.h show
that the shape of the response time curves is repeating the shape of the curves
from charts in Figs 8.c and 8.d.

The bar diagram on the Fig. 9.a. depicts the average response time of
the CWS. Applying admission control decreases the average service time from
145.22 to 74.87 seconds. Scheduling of CWS as a single unit (SJF) reduces the
response time by 36% when compared to the FIFO scheduling policy. In SJF the
decisions regarding the jobs order are made at the moment of their admission
into the CWS, thus the schedule is made in correspondence to the sizes of the
jobs at each service. Since the requests go through Service 1, their order remains
almost unchanged, thus for Services 2 and 3 it can be non-optimal. This issue
does not appear in LWKR which considers the amount of the reaming work for



Transparent Scheduling of Composite Web Services 275

Fig. 8.a. Service 1 Throughput. No

admission control

Fig. 8.b. Service 1 Throughout. LWKR

Fig. 8.c. Service 1 response time. No

admission control

Fig. 8.d. Service 1 response time. LKWR

Fig. 8.e. CWS throughput. No admission

control

Fig. 8.f. CWS throughput. LWKR

Fig. 8.g. CWS response time. No

admission control

Fig. 8.h. CWS response time. LWKR



276 Dmytro Dyachuk, Ralph Deters

each request before their execution. As the result LKWR outperforms SJF by
7%. In SJF, the priorities of the CWS requests are determined by calculating the
sum of all components services times. For LWKR the first sequence of processing
requests is determined in the identical way but the requests are also scheduled
at Services 2 and 3. Nevertheless, SJF exhibits almost the same performance
increase as the LWKR, with a lesser amount of control over the services. The
reason is that the throughput of the Service 1 is not sufficient for creating a big
buffer queue at Services 2 or 3. In consequence scheduling possibilities are reduced
and all the incoming requests for Services 2 and 3 most likely are processed in
the same way as Service 1.

It is noteworthy that the component SJF (CSJF) improvements are out-
performed by the system SJF. System SJF sacrifices the performance of the first
service for the sake of improving overall performance. Component SJF has a 32%
better performance for Service 1 (Fig. 9.a) and a worse one for the next services.

Fig. 9.a. CWS average response time Fig. 9.b. CWS maximum response time

It is interesting to note that in terms of maximum response time FIFO
outperforms all the other scheduling policies (Fig. 8.b). LWKR, CSJF, SSJF
are giving priority to “smaller” jobs, thus penalizing the larger jobs. Light
penalization of the small number of the bigger jobs, leads to a decrease in the
service time for the smaller jobs. Nevertheless the penalization of large jobs does
not exceed the service time values of the original configuration without admission
control (Fig. 9.b).

5. Conclusions & future work. This paper presents the idea of
transparent scheduling of Composite Web Services requests as means for achieving
better performance. In order to evaluate CWS scheduling policies a model for
simulation was developed. The simulation shows that scheduling significantly



Transparent Scheduling of Composite Web Services 277

reduces the average response time for the CWS in case of bulk arrivals. The
experiments showed the benefits of applying scheduling to CWS that orchestrate
according to the sequence workflow pattern.
LWKR improves the performance up to 68%, but requires placing a proxy in
front of each component. Using SJF and having just one scheduler for the
workflow leads to a 7% drop in performance compared to LWKR. While the
results of applying scheduling are very promising it is important to note that the
current work only focused on a very simplified SOA architecture. Future work
in transparent scheduling of Web Services will overcome this by addressing the
following issues:

• Document-style: In the current work we focused on RPC-style Web
Services, that exhibit the basic request/response MEP (Message Exchange
Pattern). Document-style interaction supports more complex MEPs and
raises new question in regards to scheduling.

• Composite Web Services with more complex workflow patterns:
Scheduling Composite Web Services that implement different workflow pat-
terns is still an open issue.

• Service-Layer Agreement [14] (SLA): SLAs are an increasingly impor-
tant aspect of SOA. Scheduling can be used as a means for achieving this by
minimizing penalties and supporting QoS contracts in critical situations.

REFERE NCES

[1] Four Tenets Of Service Orientation. http://msdn.microsoft.com/msdnmag/
issues/04/01/Indigo/ default.aspx.

[2] Heiss H., R. Wagner. Adaptive load control in transaction processing
systems. In: Proceedings of the 17th International Conference on very Large
Data Bases, VLDB’91, (1991), 47–54.

[3] Dyachuk D., R. Deters. Optimizing performance of web service
providers, In: Proceedings of IEEE International Conference on Advanced
Information Networking and Applications, AINA-2007, 2007.

[4] Dyachuk D., R. Deters. Scheduling of composite web services, In:
Proceedings of OTM 2006 Workshops on The Move to Meaningful Internet



278 Dmytro Dyachuk, Ralph Deters

Systems, Heidelberg, Lecture Notes in Computer Science, Vol. 4277,
Springer-Verlag, 2006, 19–20.

[5] Dyachuk D., R. Deters. Transparent scheduling of web services. In: 3rd
International Conference on Web Information Systems and Technologies,
2007.

[6] Erradi A., P. Maheshwari. wsBus: QoS-aware middleware for reliable
web services interactions. In: EEE’05: Proceedings of the 2005 IEEE
International Conference on e-Technology, e-Commerce and e-Service
(EEE’05) on e-Technology, e-Commerce and e-Service, 2005, 634–639.

[7] Siddhartha P., R. Ganesan, S. Sengupta. Smartware – A management
infrastructure for web services. In: WSMAI, 2003, 42–49.

[8] Elnikety S., E. Nahum, J. Tracey, W. Zwaenepoel. A method for
transparent admission control and request scheduling in e-commerce web
sites. In: WWW’04: Proceedings of the 13th International Conference on
World Wide Web, 2004, 276–286.

[9] Mitra N. SOAP version 1.2 part 0, 2007.
http://www.w3c.org/TR/soap12-part0/.

[10] Smith W. E. Various Optimizers for Single-State Production. Naval
Research Logistics Quarterly, 1956.

[11] Aalst W. M. P. V. D., A. H. M. T. Hofstede, B. K. a. A. P. Barros.

Workflow Patterns, Distrib. Parallel Databases, 14 (2003), 5–51.

[12] Apache Axis. http://ws.apache.org/axis/.

[13] XJ Techologies. Anylogic 5.5. http://www.xjtek.com/.

[14] Keller A., H. Ludwig. The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services. IBM Research
Report, May, 2002.

Department of Computer Science

University of Saskatchewan

Saskatoon, Saskatchewan

S7N 5C9 CANADA

e-mail: dod401@mail.usask.ca

e-mail: deters@cs.usask.ca


