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DEPENDENCE STRUCTURE

OF SOME BIVARIATE DISTRIBUTIONS

Boyan Dimitrov

Abstract. Dependence in the world of uncertainty is a complex concept.
However, it exists, is asymmetric, has magnitude and direction, and can be
measured. We use some measures of dependence between random events to
illustrate how to apply it in the study of dependence between non-numeric
bivariate variables and numeric random variables. Graphics show what is
the inner dependence structure in the Clayton Archimedean copula and the
Bivariate Poisson distribution. We know this approach is valid for studying
the local dependence structure for any pair of random variables determined
by its empirical or theoretical distribution. And it can be used also to sim-
ulate dependent events and dependent r/v/’s, but some restrictions apply.

1. Introduction. Let A and B be two arbitrary random events and
P (B) > 0 (i.e. B is a possible event). The conditional probability of A, given B,
is defined by

(1) P (A|B) =
P (A ∩B)

P (B)
,
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and is used to introduce the independence: When the following is fulfilled

(2) P (A|B) = P (A),

then A is independent of B. The independence is equivalent to the fulfillment
of the equation

(3) P (A ∩B) = P (A)P (B).

Most textbooks on probability (e.g. [2]) stop the use of conditional prob-
ability at the definition of independence and few rules, like Total Probability rule
and Bayes rule. Independence is symmetric. It is mutual. Moreover, any pair
A and B (the complement of B), A and B, A and B are mutually independent
too. The inconvenience of equation (2) in the definition of independence is that
it requires P (B) > 0. When P (B) = 0, the conditional probability is not defined,
since (1) will involve an improper division by zero. However, if P (B) = 0 (then
B is called impossible, or zero event), equation (3) is fulfilled, whatever the event
A is. Hence, if we define the conditional probability P (A|B) = P (A) in cases
P (B) = 0, both equations (2) and (3) equivalently express the independence no
matter that one of the events is impossible. In addition when P (B) = 1 (sure
event), the independence of B with any other event A is also a fact, confirmed by
either (2) or (3).

Therefore, a zero event and a sure event are independent with any other

event. The most important fact is that when equality in (2) or (3) does

not hold, the events A and B are dependent. In this article we explore the
situations when dependence between random events is a fact. We show that the
strength of this dependence can be measured, has magnitude and direction, and
is asymmetric. Further we explain how dependence between events can be prac-
tically used in the study of local dependence between random variables. And we
illustrate this idea on some known bivariate distributions, like the empirical dis-
tribution between non-numeric variables, or like the components of the bivariate
random vector with Clayton copula joint distribution. The graphical illustra-
tions confirm the usefulness and the simplicity of this detailed analysis of inner
dependence structures for pairs of dependent r.v. s.

2. Dependent events. Four measures of dependence.

2.1. Connection between random events. Dependence in the world of
uncertainty is a complex concept. We use the concept of dependence proposed by
Obreshkov [9] and discussed in Dimitrov [3]. References on the later publication
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will be used to avoid long explanations and omit proofs. We call the probabilities
P (A) and P (B) marginal probabilities of the participating events, and P (A∩B)
is called joint probability of these events.

Definition 1. The number

(4) δ(A,B) = P (A ∩B)− P (A)P (B)

is called connection between events A and B.

The following properties of the connection hold:
δ1) The connection δ(A,B) equals zero if and only if the events are inde-

pendent.
δ2) The connection between events A and B is symmetric.

δ(A,B) = δ(B,A).

δ3) If A1, A2, . . . , Aj , . . . are mutually exclusive events, then the following
is fulfilled

δ
(

∑

Aj , B
)

=
∑

δ(Aj , B).

The function δ(A,B) is additive with respect to either of its arguments.
Therefore, it is also a continuous function as the probabilities in its construction
are.

δ4) The connection δ(A,B) satisfies δ(A ∪ C,B) = δ(A,B) + δ(C,B) −
δ(A ∩ C,B), and this is equivalent to the rule for probability of the union for
arbitrary two events. Therefore, most of the properties of the probability function
for random events can be transferred as properties of the connection function
including extensions for union of any finite number of events.

δ5) The connection between events A and B equals (by magnitude) the
connection between events A and B, but has an opposite sign, i.e., it is true that
δ(A,B) = −δ(B,A). The connection between the complementary events A and
B is the same as between A and B, i.e., it is fulfilled that δ(A,B) = δ(B,A).

δ6) If the occurrence of A implies the occurrence of B, i.e., when we have
A ⊆ B, then it is fulfilled that δ(A,B) = P (A)P (B) and the connection between
the events A and B is positive.

δ7) If A and Bare mutually exclusive, i.e., whenA∩B = ∅, then δ(A,B) =
−P (A)P (B) and the connection between the events A and B is negative.

δ8) When δ(A,B) > 0, the occurrence of one of the two events increases
the conditional probability for the occurrence of the other event. The following
relation is true:

(5) P (A|B) = P (A) +
δ(A,B)

P (B)
.
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If δ(A,B) < 0 (then also P (A)P (B) 6= 0), the occurrence of one of the
events decreases the chances for the other one to occur. Equation (5) indicates
that the knowledge of the connection is very important, and can be used for

calculation of the posteriori probabilities, as when we apply the Bayes’ rule!

The numeric value of the connection δ(A,B) for two events is sufficient,
together with their prior (marginal) probabilities, in order to exactly evaluate
the posterior probability of either of the two events when the other one occurs.
We anticipate most applications of the connection as a measure of dependence
to be oriented towards such purposes. We call them predictions. The connection
δ(A,B) also is sufficient to restore the joint probability P (A ∩ B) for two events
with marginal probabilities P (A) and P (B).

We call the events A and B positively associated when δ(A,B) > 0, and
negatively associated when δ(A,B) < 0. The reason for this is the relationship
(5) which shows the increase or decrease of the conditional probability for the
occurrence of one of the events when the other one occurs.

Remark 1. Let us introduce the indicator of the random event Aas
IA = 1, when A occurs, and IA = 0 when the complement A occurs. Then it is
true that E(IA) = P (A) and

Cov(IA, IB) = δ(A,B).

Therefore, the connection between two random events equals the covariance be-
tween their indicators.

Comment. Similarly to the covariance between r.v. s, the numerical
value of the connection δ(A,B) does not show the magnitude of the dependence
between A and B. It is intuitively clear that the strongest connection should
be between two coinciding events, i.e., the strongest connection must hold when
A = B. In such cases we have P (A) = P (B), and also δ(A,B) = P (A)−P 2(A) =
P (A)[1−P (A)]. Therefore, δ(A,A) depends on the value of P (A) and is close to
zero when A is close to the sure, or to the impossible event.

Due to this reason other measures are used to establish the strength of the
dependence between two random events. We focus on them in the next section.

2.2. Regression coefficients as measure of dependence. The reason
for such a name will be given at the end of this section. First we introduce this
measure as it is suggested by Obreshkov [9].

Definition 2. We call a regression coefficient rB(A) of the event A with

respect to the event B the difference between the conditional probability for the

event A given the event B, and the conditional probability for the event A given
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the complementary event B, namely

(6) rB(A) = P (A|B)− P (A|B).

This measure of the dependence of the event A on the event B is directed
dependence.

The regression coefficient rA(B) of the event B with respect to the event
A, namely

(7) rA(B) = P (B|A)− P (B|A).

The following statements hold:
(r1) Equality to zero rB(A) = rA(B) = 0 holds if and only if the two events are
independent.
(r2) The regression coefficients rB(A) and rA(B) are numbers with equal signs
and this is the sign of their connection δ(A,B). It holds the relationship

(8) δ(A,B) = rB(A)P (B)[1 − P (B)] = rA(B)P (A)[1 − P (A)].

The numerical values of rB(A) and rA(B) may not always be equal. There
exists an asymmetry in the dependence between random events, and
this reflects the nature of real life.

For rB(A) = rA(B) to be valid, it is necessary and sufficient for the
following to be fulfilled

P (A)[1 − P (A)] = P (B)[1− P (B)].

(r3) When rB(A) > 0, the occurrence of the event B increases the conditional
probability of the occurrence of the event A. It is true:

(9) P (A|B) = P (A) + rB(A)[1 − P (B)]

Knowledge of the regression coefficients is important, and can be used for
calculation of the posterior probabilities as when applying Bayes’ rule.
(r4) The regression coefficients rB(A) and rA(B) are numbers between −1 and 1,
i.e., they satisfy the inequalities

−1 ≤ rB(A) ≤ 1; −1 ≤ rA(B) ≤ 1.

(r4.1) The equality rB(A) = 1 holds only when the random event A coincides
with (or is equivalent to) the event B. Then the equality rA(B) = 1 is also valid;
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(r4.2) The equality rB(A) = −1 holds only when the random event A coincides
with (or is equivalent to) the event B—the complement of the event B. Then
rA(B) = −1, and respectivelyA = B, is also valid.

We interpret the properties (r4) of the regression coefficients in
the following way: The closer the numerical value of rB(A) is to 1, “the denser
the events A and B are inside within each other, considered as sets of outcomes
of the experiment”. In a similar way we interpret also the negative values of the
regression coefficient: “The closer the numerical value of rB(A) is to -1, the denser
the events A and B are within each other, considered as sets of outcomes of the
experiment”.

(r5) It is fulfilled that rB(A) = −rB(A), and rB(A) = −rB(A). Also the identities
rA(B) = rA(B) = −rB(A) hold.
(r6) It is true that for any mutually exclusive sequence of events

rB

(

∑

j
Aj

)

=
∑

j
rB(Aj).

(r7) The regression function possesses the property

rB(A ∪ C) = rB(A) + rB(C)− rB(A ∩ C).

Remark 2. The fact that rB(A) = rA(B) = δ(A,B) = 0, indicates that
A ∩B 6= ∅.

(r8) Freshet-Hoefding inequalities for the Regression Coefficients between two
random events:

max

{

−
P (A)

1− P (B)
,−

1− P (A)

P (B)

}

≤ rB(A) ≤ min

{

P (A)

P (B)
,
1− P (A)

1− P (B)

}

;

max

{

−
P (B)

1− P (A)
,−

1− P (B)

P (A)

}

≤ rA(B) ≤ min

{

P (B)

P (A)
,
1− P (B)

1− P (A)

}

.

These properties are anticipated to be used in simulation of dependent random
events with desired values of the regression coefficients, and with given marginal
probabilities P (A) and P (B). The restrictions must be satisfied when modelling
dependent events by use of regression coefficients.

For example if P (A) = 0.3, P (B) = 0.6, then the regression coefficient
rB(A) must be kept within the interval max[−0.3/0.4,−0.7/0.6] = −0.75, and
min[0.3/0.6, 0.7/0.4] = 0.5, i.e., only the values rB(A) ∈ [−0.75, 0.5] are legal
for the assumed regression coefficient in simulations under the given marginal
probabilities. For rA(B) it must be fulfilled that rA(B) takes values within the
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interval max[−0.6/0.7,−0.4/0.3] = −6/7, and min[0.6/0.3, 0.4/0.7] = 4/7, i.e.,
only the values rA(B) ∈ [−8/7, 4/7] are legal for the assumed regression coefficient
rA(B) in simulations in these conditions, given by the marginal probabilities of
the two events.

Remark 3. Let IA(ω) and IB(ω) be the indicator r.v. associated with
the random events A and B as in Remark 1. The argument ω symbolizes an arbi-
trary outcome from the experiment. Formally, construct the following “regression
model” which represents a possible linear relationship

(10) IA(ω) = α+ β IB(ω) + ε(ω),

where ε(ω) is a r.v. which has a zero expectation and minimum variance. It allows
one to “predict” the value of the indicator IA(ω) if one knows the value of indicator
IB(ω), and admits an error ε(ω) = IA(ω) − [α + βIB(ω)]. In this prediction the
values of the coefficients α∗ and β∗ are such numbers that the following is fulfilled

E[IA(ω)− α− βIB(ω)] = 0, and

V ar[IB(ω)− α∗ − β∗IA(ω)] = min
α,β

{V ar[IA(ω)− α− βIB(ω)]}.

The “optimal” coefficient have the values

(11) α∗ = P (A) + δ(A,B)/P (B) = P (A|B).

and

(12) β∗ = P (A|B)− P (A|B) = rB(A).

The asymmetry in this form of dependence of one event on the other can
be explained by the different capacity of the events. Events with less capacity
(smaller amounts of favorable outcomes) will have less influence on events with
larger capacity. Therefore, when rB(A) is less than rA(B), the event A is weaker
in its influence on B. We accept it as reflecting what actually exists in the real
life. By catching the asymmetry with the proposed measures we are convinced
about their flexibility and utility features.

Remark 4. It is possible to use rB(A) for ranking the events by the
magnitude of dependence on a certain event. Such gradation will use the distance
of the regression coefficient from zero. For instance, if the values |rB(A)| are within
distance 0.05 from zero, the event could be classified as “almost independent on the
other”, for distances between 0.05 to 0.2 from zero, the event may be classified
as weakly dependent on the other; if the distance is between 0.2 and 0.45, the
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event could be classified as moderately dependent ; from 0.45 to 0.8 it could be
called as dependent on the average, and above 0.8 it could be classified as strongly

dependent. Users will understand that this classification is very relative.
Actually, if we fix the event A, and consider any finite sequence B1, B2,

. . . , Bn of random events, then these events can be ordered according to their
“magnitude of influence on event A” which corresponds to the absolute value of
their regression coefficients rBk

(A) with respect to the event A.The higher the
absolute value of rBk

(A), the stronger the influence of Bk on A is.

2.3. Correlation between two random events.

Definition 3. We call a correlation coefficient between two events A and

B the number

(13) RA,B = ±
√

rB(A) · rA(B),

where the sign, plus or minus, is the sign of either of the two regression coefficients.

An equivalent representation of the correlation coefficient RA,B in terms
of the connection δ(A,B) holds, namely

(14) RA,B =
δ(A,B)

√

P (A)P (A)P (B)P (B)
=

P (A ∩B)− P (A)P (B)
√

P (A)P (A)
√

P (B)P (B)
.

If it happens that some of the events A or B is a zero or sure event, then δ(A,B) =
rB(A) = rA(B) = RA,B = 0 despite the formality in (14) remains the undefined
quantity 0/0.

Remark 5. The correlation coefficient RA,B between the events A and
B equals the formal correlation coefficient ρIA,IB between the random variables
IA and IB , the indicators of the two random events Aand B,as defined in Remark
1. This explains the terminology proposed by Obreshkov [9].

The correlation coefficient RA,B between two random events is sym-
metric, is located between the numbers rB(A) and rA(B), and possesses the
following properties:
R1. RA,B = 0 holds if and only if the two events Aand B are independent. The
use of the numerical values of the correlation coefficient is similar to the use of
the two regression coefficients. The closer RA,B is located to zero, the “closer” the
two events A and B are to independence.

For random variables a similar statement is not true. The equality to
zero of their mutual correlation coefficient does not mean independence, but only
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registers an absence of correlation. The two random variables are called then
non-correlated and may not be independent.

R2. The correlation coefficient RA,B is always a number between −1 and +1,
i.e., it is fulfilled that −1 ≤ RA,B ≤ 1.

R2.1. The equality RA,B = 1 holds if and only if the events A and B are
equivalent, i.e., when A = B.

R2.2. The equality RA,B = −1 holds if and only if the events A and B are
equivalent, i.e., when A = B (then of course it holds also that A = B).

The closer RA,B is to the number 1, the “ denser within one another” the
events A and B are, and when RA,B = 1, the two events coincide (are equivalent).

The closer RA,B is to the number −1, the “denser one within the other”
the events A and B are, and when RA,B = −1, the two events coincide (are
equivalent). Then the events A and B are denser within one another.

R3. The correlation coefficient RA,B has the same sign as the other measures
of the dependence between two random events Aand B (and this is the sign of
the connection δ(A,B), as it is the sign of the two regression coefficients rB(A)
and rA(B)). Knowledge of RA,B allows calculating the posterior probability of
one of the events under the condition that the other one occurred. For instance,
P (A| B) will be determined by the rule

(15) P (A|B) = P (A) +RA,B

√

P (B)P (A)P (A)

P (B)
.

This rule reminds again of Bayes’ rule for posterior probabilities. The net
increase or decrease in the posterior probability compared to the prior probability

equals the quantity RA,B

√

P (B)P (A)P (Ā)

P (B)
, and depends only on the value of

the mutual correlation RA,B (positive or negative).

Important Note. The proposed rules (5), (9) and (15) for evaluating
the posterior probability P (A|B) via any of the proposed measures of dependence
can be turned into a powerful tool in calculating posterior probabilities, with a
brilliant use of the statistical information for practical purposes. Note that the
definitions of δ(A,B), rB(A), rA(B), and RA,B involve only probabilities. These
probabilities have natural frequency statistical estimations. Imagine that A is an
event in the future (tomorrow), and B is an event from the past (yesterday, or
today), then we can immediately see what a tremendous tool for forecasting such
dependence measures could be.

R4. It is fulfilled that RA,B = RA,B = −RA,B; RA,B = RA,B .
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R5. The Freshet-Hoefding inequalities for the Correlation Coefficient are as fol-
lows

max







−

√

P (A)P (B)

P (A)P (B)
,−

√

P (A)P (B)

P (A)P (B)







≤ R(A,B)

≤ min

{

√

P (A)P (B)

P (A)P (B)
,

√

P (A)P (B)

P (A)P (B)

}

Their use is similar to the ones for the regression coefficient. Notice their
importance in construction (e.g., for simulation, or modeling purposes) of events
with given individual probability, and desired mutual correlation.

For example if P (A) = 0.3, P (B) = 0.6, then the correlation coeffi-

cient RA,B must be kept within the interval max

[

−

√

0.18

0.28
,−

√

0.28

0.18

]

= −

√

9

14

as a left end, and min

[

√

0.12

0.42
,

√

0.42

0.12

]

=

√

2

7
as a right end. Only values

RA,B ∈

[

−

√

9

14
,
2

7

]

are legitimate values for any assumed regression coefficient

in simulations under the given marginal probabilities.

Some warnings. First of all, we notice that the introduced measures
of dependence between random events are not transitive. It is possible that the
random event A is positively associated with a random event B, and B is posi-
tively associated with a third random event , but the event A may be negatively
associated with . The association for mutually exclusive events is negative, while
for the non-exclusive pairs (A,B) and (B, ) every kind of dependence is possi-
ble. The dependence between compound events is not an integral feature, and is
composed from a number of particular details.

3. Empirical estimation of the measures of dependence be-

tween two random events. The fact that the considered measures of de-
pendence between random events are constructed from their marginal, joint, or
conditional probabilities makes them attractive, easy for statistical estimation
and practical use.

Let in N independent experiments (or observations) the random event A
occur kA times, the random event B occur kB times, and the event A ∩B occur
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kA∩B times. It is well known that the statistical estimator of the probability
P (A) is the ratio kA/N , and the estimators of other probabilities are similar.
In this way in the definitions of the introduced measures of dependence all the
probabilities can be statistically estimated.

The estimator of the connection between the two events is given by the
formula

δ̂(A,B) =
kA∩B

N
−

kA
N

·
kB
N

;

The estimators of the two regression coefficients are

r̂A(B) =

kA∩B

N
−

kA
N

·
kB
N

kA
N

(1−
kA
N

)

; and r̂B(A) =

kA∩B

N
−

kA
N

·
kB
N

kB
N

(1−
kB
N

)

;

The estimator of the correlation coefficient is given by the rule

R̂(A,B) =

kA∩B

N
−

kA
N

·
kB
N

√

kA
N

(1−
kA
N

)
kB
N

(1−
kB
N

)

.

According to the rules of statistical estimation, all these estimators are
consistent. Moreover, the estimator of the connection δ̂(A,B) is unbiased. The
estimators obtained in this way are also maximum likelihood estimators and have
the respective MLE properties.

We notice that the use of the conditional probabilities in the estimations
of the regression coefficients is not needed. We personally are excited by the
opportunities offered by these measures.

4. Applications.

4.1. Categorical variables. As an illustration of the proposed measures
of dependence between random events we analyze here an example from the book
by Alan Agresti Categorical Data Analysis [1]. The following table represents the
observed data about the yearly income of people and their job satisfaction.

The probabilities in each category

Pi,j =
ni,j

n
, Pi,. =

n.i

n
, P.,j =

n.j

n
,

in the above table produce the join empirical distribution of the two categories.
Pi,j is the probability that a new observation will fall in the respective subcategory



244 Boyan Dimitrov

Table 1. Observed Frequencies of Income and Job Satisfaction

Job Satisfaction

Categories by the Very Little Moderately Very Total
income in US $$ Dissatisfied Satisfied Satisfied Satisfied Marginally

Less than 6000 20 24 80 82 206

6000–15 000 22 38 104 125 289

15 000–25 000 13 28 81 113 235

Above 25 000 7 18 54 92 171

Total Marginally 62 108 319 412 901

Table 2. Joint and marginal distributions between the observed categories and
subcategories.

Job Satisfaction

Income US $$ Very
Dissatisfied

Little
Satisfied

Moderately
Satisfied

Very
Satisfied

Total (marginal)
distribution

Less than 6000 0.02220 0.02664 0.08879 0.09101 0.22864

6000–15 000 0.02442 0.04217 0.11543 0.13873 0.32075

15 000–25 000 0.01443 0.03108 0.08990 0.12542 0.26083

Above 25 000 0.00776 0.01998 0.05993 0.10211 0.18978

Total (marginal)
distribution

0.06881 0.11987 0.35405 0.45727 1.00000

i by income, and subcategory j by job satisfaction. Table 2 presents the join
distribution for the two categorical variables.

Applying the rules for the proposed measures of dependence between ran-
dom events, and using the empirical probabilities in Table 2, we obtain these
measures as shown in the tables from 3 to 6. A positive sign indicates a positive
local dependence between the two sub-categories, and a negative sign indicates
the opposite in this locality. The negative association is marked in bold, and the
positive areas of association in normal.

Since numbers speak less than graphs, we immediately give graphic presen-
tation of these two-argument functions giving the dependence structure between
the observed categories (cross sections of any two sub-categories). As the ancient
Greeks used to say, just “look and decide”.

For instance, in Table 4 the number rV eryDissatisfied(< 6000) =
0.100932704 indicates positive dependence of the category of the lowest income
“< 6000” on the category: “Very Dissatisfied” for the Job Satisfaction. The same
number with negative sign rV eryDissatisfied(< 6000) = −0.100932704 indicates
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Table 3. Empirical Estimations of the connection function for each particular category
of Income and Job Satisfaction δ(IncomeGroupi, Satisfactionj)

Job Satisfaction

Income US $$ Very
Dissatisfied

Little
Satisfied

Moderately
Satisfied

Very
Satisfied

Less than 6000 0.006467282 −0.00077 0.00784 −0.01354

6000–15 000 0.002349193 0.003722 0.001868 −0.00794

15 000-25 000 −0.00351771 −0.00019 −0.00245 0.00615

Above 25 000 −0.00529876 −0.00277 −0.00726 0.015329

Total sum in a column 0 0 0 0

the negative strength of dependence of all the other income categories, opposite
to “< 6000” on the category: “Very Dissatisfied” for the Job Satisfaction. Sim-
ilarly to the connection function, the sums of numbers from several cells in a
column of Table 4 (or in a row of Table 5) will indicate the strength of depen-
dence of the union of the sub-categories of the respective factor “Income” on the
sub-category of “Job, Satisfaction” corresponding to the column (with analogous
switch of factor’s interpretation).

The two matrices for regression coefficients allow calculating the correla-
tion coefficients between every pair of sub-categories of the two factors. Table 6
summarizes these calculations. The numbers actually represent the numerical es-
timations of the respective mutual local correlation coefficients. Obviously, each
of these numbers gives the local average measure of dependence between
the two factors. Unfortunately, the sum of the numbers in a vertical or horizontal
line does not have the same or similar meaning as in the cases of regression in
regression matrices. Also, the sums of the numbers in a row or in a column do
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Table 4. Empirical Estimations of the regression coefficient between each particular
level of income with respect to the job satisfaction rSatisfactionj

(IncomeGroupi)

Job Satisfaction

Income US $$ Very
Dissatisfied

Little
Satisfied

Moderately
Satisfied

Very
Satisfied

Less than 6000 0.100932704 −0.00727 0.034281 −0.05456

6000–15 000 0.036663063 0.035276 0.00817 −0.03199

15 000–25 000 −0.05489976 −0.00176 −0.0107 0.024782

Above 25 000 −0.08269601 −0.02625 −0.03175 0.061768

not equal zero as above.

Some predictions of the Income sub-group are now possible. After we
know the job satisfaction subcategory, the marginal probabilities and the values
of local connections (or local regression coefficients, or correlation) we can use any
of the equations (5), (9), or (15). Table 7 presents these posterior probabilities.
For comparison, the “prior” probabilities for each subcategory are given in the
margin (the last column).

The greatest numbers inside the table show the “hot local positions”, where
the conditional probability increases compared to the prior (unconditional) proba-
bility. The blue colored numbers show the places of local decrease in the posterior
probability. If someone answers “very dissatisfied”, then the highest chance is that
this is a person whose income is in the range of 6000–15 000. The chances that
such answer comes from person of income “Less than 6000” increase by approxi-
mately .10. If someone answers “Very Satisfied”, then the lowest chances are that
this is a person of income “< $6000”. This is totally different (as the entire order
of income sub-classes) from the prior distribution of the income groups. Also, the
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Table 5. Empirical Estimations of the regression coefficient between each particular
level of the job satisfaction with respect to the income

Job Satisfaction

Income US $$ Very
Dissatisfied

Little
Satisfied

Moderately
Satisfied

Very
Satisfied

Less than 6000 0.03667013 −0.00435 0.044454 −0.07677

6000–15 000 0.01078257 0.017082 0.008576 −0.03644

15 000-25 000 −0.01824561 −0.00096 −0.01269 0.0319

Above 25 000 −0.03446045 −0.01801 −0.04723 0.099694

sum of the numbers in a column gives 1, since there are all the possible parts of

the sure event (S =
∑

i
Ai).

Similarly, if one knows the income group Ai and has either of the measures
of dependence and P (Bj) for particular group j, then the conditional (posterior)
probabilities P (Bj |Ai) of the job satisfaction groups can be re-evaluated by the
same rules. Table 8 presents these probabilities. For comparison, prior P (Bj) are
given on the margin (the last row).

Here we would like to observe that similar “categorizations” can be made
for any two numeric random variables, and what we see and read in the above
tables can be used for studies of the local structure of dependence between random
variables.

4.2. Numeric random variables. We illustrate now the idea of transfer-
ring these measures of dependence between random events into measures of local
dependence between random variables (r.v. s). These measures allow studying the
behavior of interaction between any pair of numeric r.v. s (X,Y ) throughout the
sample space, and better understanding and use of dependence. Some examples
of popular distributions will be provided further.
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Table 6. Empirical Estimations of the correlation coefficient between each particular
income group and the categories of the job satisfaction

R(IncomeGroupi, Satisfactionj)

Job Satisfaction

Very Very Little Moderately Very Total
Dissatisfied Dissatisfied Satisfied Satisfied Satisfied

∑

k

P (Ai|Bk) = 1

< 6000 0.09709587 −0.11651505 0.388339748 −0.398049335 1

6000–15 000 0.07613406 0.13147311 0.359875292 −0.432517537 1

15 000–25 000 −0.05532339 −0.11915807 −0.34466894 0.480849596 1

> 25 000 −0.04088945 −0.1052798 −0.3157867 0.538044051 1

Unconditional
Probabilities

P (B)

0.06881 0.11987 0.35405 0.45727 1.00000

Table 7. Forecasted probabilities P (Ai|Bj) = P (Ai) + δ(Ai, Bj)/P (Bj) of particular
income group given the categories of the job satisfaction

Income Very Little Moderately Very Unconditional
US $$ Dissatisfied Satisfied Satisfied Satisfied Probabilities P (A)

< 6000 0.32262753 0.22224076 0.250783788 0.19902902 0.22864

6000–15 000 0.35489028 0.35179778 0.326027397 0.303387495 0.32075

15 000–25 000 0.20970789 0.25928089 0.253918938 0.274279966 0.26083

> 25 000 0.11277431 0.16668057 0.169269877 0.223303519 0.18978

Total
∑

iP (Bk|Ai) = 1
1.00000 1.00000 1.00000 1.00000 1.00000

Let the joint cumulative distribution function (c.d.f.) be F (x, y) = P (X ≤
x, Y ≤ y), and marginals F (x) = P (X ≤ x, G(y) = P (Y ≤ y).
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Table 8. Forecast of the probabilities p(Bj |Ai) = P (Bj) + δ((Ai, Bj)/PAi) of particular
income group given the categories of the job satisfaction

Job Satisfaction

Very Very Little Moderately Very Total
Dissatisfied Dissatisfied Satisfied Satisfied Satisfied

∑
kP (Ai|Bk) = 1

< 6000 0.09709587 0.11651505 0.388339748 0.398049335 1

6000–15 000 0.07613406 0.13147311 0.359875292 0.432517537 1

15 000–25 000 0.05532339 0.11915807 0.344668941 0.480849596 1

> 25 000 0.04088945 0.1052798 0.3157867 0.538044051 1

Unconditional
Probabilities

P (B)

0.06881 0.11987 0.35405 0.45727 1.00000

Let us introduce the events

A = {X ≤ x}; B = {Y ≤ y}, for any x, y ∈ (−∞,∞).

Then the measures of dependence between events A and B turn into a cumulative
measure of dependence between the pair of r.v.s X and Y at the point (x, y).
Naturally, they can be named and calculated as follows:

Connection at the point (x, y)

δ(x, y) = F (x, y) − F (x)G(y);

Regression coefficient of X with respect to Y , and of Y with respect to
X at the point (x, y), by the use of equation (8)

RY (X;x, y) =
F (x, y)− F (x)G(y)

F (x)[1 − F (x)]
, and RX(Y ;x, y) =

F (x, y)− F (x)G(y)

G(y)[1 −G(y)]
.

Correlation coefficient between the r.v.s X and Y at the point (x, y), by
the use of equation (14)

RX,Y (x, y) =
F (x, y)− F (x)G(y)

√

F (x)[1 − F (x)
√

G(y)[1 −G(y)]
.

In Dimitrov et al. [4], [5] and [6], these measures have been studied and
called cumulative measures of dependence between components of a multivari-
ate random vector. As an important geometric illustration of the dependence
structure between two r.v. s it is suggested to draw curves of constant depen-
dence. These are the sets of all possible points of coordinates (x, y) in the plane
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where the respective measure is constant. If we denote by mX,Y (x, y) the value of
any particular measure of dependence listed above, then these curves of constant
dependence at level m0 are defined by the equations

C(m0) = {(x, y); mX,Y (x, y) = m0, (x, y) ∈ R2}.

Moreover, given an interpretation of the equation

z = mX,Y (x, y)

as an equation of a 3-d surface, such surfaces will tell us everything about the
cumulative local dependence (in regard of the considered measure) between the
pair (X,Y ) on the plane R2.

We take the following examples from that study to illustrate how these
relationships can be used to study the cumulative dependencies between random
variables.

Example 1. The Clayton Archimedean copula is a two-dimensional
distribution on the square [0, 1] × [0, 1], defined by Nelsen (see [8]) the joint pdf

C(x, y) = max(x−θ + y−θ − 1,0 )−
1

θ , (x, y) ∈ [0, 1] × [0, 1].

Its connection function at a point (x, y) is then

δX,Y (x, y) = max(x−θ + y−θ − 1,0 )−
1

θ − x · y, (x, y) ∈ [0, 1] × [0, 1].

Fig. 1a. The connection function
δX,Y (x, y)

Fig. 1b. The regression coefficient
function RX(Y ;x, y)

For the Clayton copula for the case with value of θ = 2
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Fig. 2. Correlation coefficient function ρX.Y (x, y) and Regression function RY (X ;x, y)
structures for the Clayton copula in the case θ = 4

The regression coefficient function RX(Y ;x, y) at a point (x, y) is

RX(Y ;x, y) =
max(x−θ + y−θ − 1, 0)−

1

θ − xy

x(1− x)
, (x, y) ∈ [0, 1] × [0, 1].

Below are the surface graphs of these functions with the level curves for
the case with value of θ = 2.

The correlation coefficient function at a point (x, y) is

ρX,Y (x, y) =
max(x−θ + y−θ − 1, 0)−

1

θ − xy
√

x(1− x)y(1− y)
, (x, y) ∈ [0, 1] × [0, 1].

Its surface for the case with value of θ = 4, graph with level curves on it, is
shown on Fig. 2. Also on the right-hand side of Fig. 2 is presented the Regression
coefficient function RY (X;x, y) for the same case.

Example 2. The simplest Bivariate Poisson distribution with depen-
dent components. This is a two-dimensional discrete distribution, for which the
study of the local dependence structure using our approach is one of the best illus-
trations of how one can see all at once. We use the bivariate discrete distribution
presented as in [7], by the three positive parameters (λ, µ, ν) family

P (X = x, Y = y) = e−λ−µ−ν λ
x

x!
·
µy

y!

min(x,y)
∑

k=0

(

x

k

)(

y

k

)

k!

(

ν

λµ

)k

.
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Fig. 3a. The connection function
δX,Y (x, y)

Fig. 3b. The correlation function
ρX.Y (x, y)

Fig. 3c. The regression coefficient
function RY (X ;x, y)

Fig. 3d. The regression coefficient
function RX(Y ;x, y)

Here x, y = 0, 1, 2, . . . are the possible values of the variables X and Y . If M1,
M2, and M3 are three independent Poisson distributed r.v. s with parameters λ,
µ, and ν respectively, then the dependence between X and Y comes from the fact
that X is distributed as the sum X = M1 +M3, and Y = M2 +M3. Inclusion of
M3 in both sums makes them dependent. The marginal distributions of X and
Y are Poisson with parameters λ+ µ and λ+ ν respectively. We say these facts
to avoid explicating easy but cumbersome expressions for the connection function
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δX,Y (x, y), the two regression coefficient functions RX(Y ;x, y) and RX(Y ;x, y),
and for the correlation function ρX.Y (x, y) at each point (x, y) with integer coor-
dinates. When written and programmed, graphs of these functions for the case
of λ = 3, µ = 2 and ν = 5 are shown on Fig. 3 below. As the ancient Greek
geometers used to say, just watch and conclude what kind of dependence works
at what point, and what is its strength.

5. Conclusion. The measures of dependence once well established and
studied for the case of random events, can be easily and naturally turned into a
powerful tool to study the local dependence structure between random variables of
either non-numeric or numeric nature. This simple approach makes it convenient
for inclusion in education within traditional university courses in probability and
statistics, where dependence is presented vaguely and frequently is misunderstood.

The proposed approach can be used to study the local dependence struc-
ture in numerous multivariate distributions discussed in the studies and modeling
various classic or new situations of applied probability and statistics.

There are multiple opportunities to use the local dependence between
random variables to simulate such dependences on different areas of the plane. But
careful warning is to comply with the Freshet-Hoefding restrictions in selecting
dependence strengths.

Knowledge of the dependence structure can play an important role in
decision making based on information about one component in risk models, in-
vestments, politics, financial mathematics, insurance and many other fields of
applications.
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