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ACCENT RECOGNITION FOR NOISY AUDIO SIGNALS
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Abstract. It is well established that accent recognition can be as accurate
as up to 95% when the signals are noise-free, using feature extraction tech-
niques such as mel-frequency cepstral coefficients and binary classifiers such
as discriminant analysis, support vector machine and k-nearest neighbors. In
this paper, we demonstrate that the predictive performance can be reduced
by as much as 15% when the signals are noisy. Specifically, in this paper we
perturb the signals with different levels of white noise, and as the noise be-
come stronger, the out-of-sample predictive performance deteriorates from
95% to 80%, although the in-sample prediction gives overly-optimistic re-
sults.

1. Introduction. Consider an audio signal xi = (x1, x2, . . . , xp)
T , where

each vector xi represents a speech signal of a speaker and the elements in the
vector denote the amplitude through sampling, and yi ∈ {1, 2, · · · ,K} represents
the class of accent of the corresponding speaker i. An accent recognition task is
to find a classifier f that maps the signal matrix X, where each row vector is a
speech signal xi, onto y ∈ {1, 2, · · · ,K}, and that misclassification error is small.

Previous works have shown that such accent recognition tasks can be per-
formed using some feature representation of the signals and some classifiers ([2],

ACM Computing Classification System (1998): C.3, C.5.1, H.1.2, H.2.4., G.3.
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[20]). Also, a specific feature, the mel-frequency cepstral coefficients (MFCCs),
has been shown to work well in practice ([9], [3]). It is well established in [17]
that when K = 2, that is, a binary classification is performed, and the signals are
noise-free, the prediction accuracy is as high as 95%. In this paper we demon-
strate that such high performance would quickly deteriorate when the signals are
contaminated by noise in the same context of binary classification. Section 2 pro-
vides a brief introduction of feature extraction with MFCCs. A review of certain
pattern recognition classifiers, including the discriminant analysis, support vector
machine, and the k-nearest neighbor algorithm, is provided in Section 3. Section
4 and 5 discuss the implementation of such accent recognition techniques with a
designed study. In detail, Section 4 describes the study and the data, and Section
5 provides the results of predictive performance in the context of both pure signal
and noisy signal. A conclusion is provided in Section 6.

2. Feature extraction using MFCCs. One problem in the tasks
involving audio signals is that the dimensionality p can be readily large as a
large sampling rate is used, resulting in the learning process in a large-p-small-n
problem. According to [10], such large-p-small-n problem problems are ill-posed
since mostly the results of such problems do not exist. Thus, it is important to find
a good representation of the signals that can perform both feature extraction and
dimension reduction. Here we introduce the technique of mel-frequency cepstral
coefficients, which is a popular feature extraction tool in tasks such as speech
recognition ([19], [12], [11], [4]) and musical instrument analysis ([16], [18]).

According to [15], the so-called MFCCs is to transform the signal from
time domain to frequency domain. A paradigm of the computation of MFCCs is
given in Figure 1. In this process, window functions are used due to the fact that

Fig. 1. A block diagram of the computation of MFCCs

Fourier transform can only be performed when the signal is stationary, which is
not available when a signal is relatively long. The mel-scale is used instead of the
regular hertz scale on a frequency domain in order to compensate the insensibility
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of the human hearing ability at high frequency band. The relation between the
two scales is given by

(2.1) mel =







f f ≤ 1000

2595 log10

(

1 +
f

700

)

f > 1000

It is obvious that mel-scale transforms the wide coverage at a high frequency band
with hertz scale to a much narrower coverage.

In the final step of using discrete cosine transform extracting MFCCs, one
can arbitrarily control the number of MFCCs to be preserved. In practice, this
number is kept between 12 and 40. Also, because of the discrete cosine transform,
the MFCC vectors are designed to be orthogonal to each other.

3. Techniques in binary classification.

3.1. Discriminant analysis. A standard approach to supervised classi-
fication problems is the discriminant analysis. From a Bayesian perspective, let
Y ∈ {1, 2, . . . ,K} be a discrete target and X be the data matrix. The binary
classification problem can be formulated like this: given some feature xi, classify
the corresponding target yi into one of the classes. A straightforward and rather
reasonable strategy is to classify yi into the most probable class given the data
([14]). Formally, the problem can be written as

f̂(x) = max
k

Pr(Y = k | X = x).

Implementing the well-known Bayes’ theorem, the right-hand side can be written
as

Pr(Y = k | X = x) =
fk(x)πk
f(x)

,

where fk(x) is the conditional density of x in class k, πk the prior probability of
corresponding class k, and f(x). Thus the discriminant analysis is a likelihood-
based technique. That is, in order to compute the posterior probability, it is
necessary to have some knowledge of the distribution of fk(x).

Assigning Gaussian distributions to fk(x) with mean µk and covariance
matrix Σk, the discriminant function can be written as a quadratic form

(3.1) δk(x) = −
1

2
log |Σk| −

1

2
(x− µk)

TΣ−1
k (x− µk) + log(πk)

and the decision rule is to assign x to class i if δi(x) > δj(x), that is,

(3.2) f̂QDA(x) = argmax
k

δk(x).



172 Zichen Ma, Ernest Fokoué

A further assumption that specifies the same covariance matrix to all classes is
sometimes applied. That is, the covariance matrices can be written as Σ1 = Σ2 =
· · · = ΣK = Σ. Under such conditions, Equation 3.1 can be further simplified to

(3.3) δk(x) = x
TΣ−1µk −

1

2
µT
kΣ

−1µk + log(πk).

Equation 3.3 is usually called the linear discriminant function, since it only in-
volves a linear term of x. The decision rule is the same as a quadratic discriminant
function.

Although in some applications the Gaussian assumption appears to be
useful, it is in fact a rather arbitrary one. Some methods have been considered
as better alternatives to the Gaussian assumption. For instance, flexible mixtures
of Gaussian density can be fitted to the data and the discriminant analysis can
be performed in terms of Gaussian mixture model ([13]). Or in a more general
sense, the conditional densities can be estimated using kernel methods and the
classification is performed based on kernel density estimation ([1]).

3.2. Support vector machine. Ever since its invention in [6], the sup-
port vector machine has been demonstrated as the state-of-the-art technique in
binary classification. In its simplest case, in which there exists a linear decision
boundary or a hyperplane that can completely separate the data of two classes,
SVM deals with the question of what a best separation of the data should be. It
concludes that the best separation is the solution of an optimization problem that
seeks to maximize the distance between any observations and the linear boundary
([5]).

Mathematically, given a hyperplane on a p-dimensional space

(3.4) w · φ(x)− b = 0,

where w is a coefficient vector, φ(·) a function that transforms the data to a
linearly separable case, x a point on that space, SVM can be formed as an opti-
mization problem

arg min
(w,b)

1

2
‖w‖2

subject to: yi(w · φ(xi)− b) ≥ 1.

The general SVM decision boundary is simply to replace the x vectors into a
function φ(x).

(3.5) f̂SVM (x) = sign

(

∑

i

α̂iyiφ(xi) · φ(x) + b̂

)
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It is of extreme importance to notice that the nonlinear mapping function φ ap-
pears in the decision function in the sense of feature space inner product. Com-
putationally, choosing the function φ can become infeasible quickly, while the
well-known kernel trick should be used to avoid the explicit use of φ. Assume a
kernel function K can be found so that K(xi,x) = φ(xi)

Tφ(x), the above decision
boundary can be modified by replacing the inner product by the kernel function.

(3.6) f̂SVM (x) = sign

(

∑

i

α̂iyiK(xi,x) + b̂

)

This provides great convenience in which it is not necessary to compute the non-
linear mapping explicitly, but only to perform it implicitly through the kernel.
Some common kernel functions include the Radial Basis Function (RBF) kernel

K(xi,xj) = exp(−γ ‖ xi − xj ‖
2)

and the polynomial kernel

K(xi,xj) = (xi · xj + c)d.

It is also of importance to know that there is no theoretical proof showing one
kernel function is significantly better than others, so that which kernel function
to use is an empirical question and is usually answered through the comparison
of the prediction accuracy of SVM models using different kernels.

3.3. K-nearest neighbors. Compared to the above two techniques, the
algorithm of k-nearest neighbors is more intuitive and is often considered as a lazy
learning. The idea of this algorithm goes like this: given a dataset with known
classes, or simply put, a training set, and some new data points with unknown
classes, compare the distance of a new point and its first k nearest neighbors and
assign the new point to the class that the majority of these neighbors lie within.
For instance, when k = 1, we simply assign a new data point to the same class
as its single nearest neighbor ([8]). That it is considered lazy learning is because
no formal model is needed in this algorithm. The only requirements are a dataset
in which the classes of observations are already known, some measurement for
distance, and an integer k.

Mathematically, let Tr = {(xi, yi) | xi ∈ R
p, yi ∈ {1, 2, · · · , S}}ni=1 be a

training set and x
∗ a new data point. The distances of x∗ and xi’s are computed

on the basis of some bivariate function D(·, ·) and ranked in an increasing order.
Specify a set Vk(x

∗) = {xi | D(x∗,xi) ≤ D(k)}, where D(k) is the distance between
the new point and the kth nearest neighbor. And the decision boundary can be
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written as

(3.7) f̂kNN(x∗) = arg max
j∈{1,2,··· ,S}

{

1

k

n
∑

i=1

I(yi = j)I(xi ∈ Vk(x
∗))

}

where I(·) is an indicator function.

The crucial part of the k-NN algorithm is the distance function. Conven-
tionally, the Euclidean distance

D(xi,xj) =

√

√

√

√

n
∑

l=1

(xil − xjl)2

or the Manhattan distance

D(xi,xj) =

n
∑

l=1

|xil − xjl|

are commonly used in the computation. Also, in a binary classification, k is
usually chosen to be an odd integer simply to avoid the tie-up situation.

A problem of this algorithm arises when the data contain a significant
amount of noise. That is, if there is significant noise in the training set and there
are some outliers in each class, the results of the classification using k-NN would
degrade. Thus in this sense, k-NN is not a robust algorithm. Some substantial
work has been done to remedy this drawback. Also, the algorithm of k-nearest
neighbors suffers of the curse of dimensionality. That is, when the dimensionality
increases, the predictive performance of this algorithm would drastically degen-
erate.

Even so, a theorem proven in 1960s ([7]) has shown the power of this
algorithm. The theorem states that given the Bayes prediction risk R∗, which
is the lowest prediction risk one can obtain, and the risk R that is given by the
nearest neighbor algorithm, it has been proven that

(3.8) R ≤ 2R∗

The inequality (3.8) states that despite the simple algorithm, the prediction risk
would not exceed the double of the lowest risk.

4. Study design and data description.

4.1. Study design without noise. In order to implement the automatic
accent recognition machine and to examine the prediction ability of the algorithm,
a study was constructed and the signal data are collected in the study. The
procedure of the study follows the steps below:
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• Through an internet resource, 22 different voices are chosen, of which 11 are
American English and 11 are not. Of the non-American voices, there are
3 British English voices, 2 Spanish voices, 2 French voices, 2 Italian voices,
and 2 German voices.

• Each voice is required to read 15 different multi-syllable English words,
such as “approximation” and “beneficial”. These words were sampled from a
population of such words without replacement, which means that no words
was assigned to two or more voices.

• A total of 15 × 22 = 330 soundtracks were recorded through some internal
recording device with a sampling rate of 44,100 Hz.

At this stage, we would not want the signals to be contaminated by noise, so that
we used the internet resource together with an internal recording device. Thus,
the soundtracks only contained pure signals. A demographic summary of the
soundtracks is given in Table 1.

Table 1. A demographic summary of soundtracks

Accent
Gender

Female Male Total

US 90 75 165

Non-US 90 75 165

Total 180 150 330

Notice that this study is balanced in terms of accent but imbalanced in terms of
gender. Since this work only focuses on the recognition of different accents, we
would ignore the gender of each voice at this point. Though each soundtrack only
contain 1 single word and thus it is fairly short, with a sampling rate of 44,100
Hz, each one of the signal vectors contains more than 30,000 elements on time
domain.

Based on the description above, the target, or response, of this classifica-
tion problem is given by

yi =

{

negative if non-US,

positive if US,

which defines this problem as a binary classification in which we are interested in
categorizing different voices into two distinct accent classes. Also notice that the
indices for the two classes may be not be the same in terms of different classifiers.
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In discriminant analysis and k-nearest neighbors, the domain of the target can be
assigned as yi ∈ {0, 1}, while in the computation of SVM, this domain must be
assigned as yi ∈ {−1, 1}.

4.2. Perturbing signal with noise. Moreover, we can artificially per-
turb the signals with noise. By doing so, we would like to further examine the
performance of the accent recognition algorithms under certain levels of noise.
Using the signals in the same study, we are able to acquire the noisy sound by
injecting some well-designed noise into the pure signals.

One such noise is the autoregressive model. An autoregressive model is a
type of time-series model that specifies the output has a linear dependence only
from its own previous values. In general, a pth-order autoregressive model is
defined as

(4.1) Xt =

p
∑

i=1

φiXt−i + ǫt,

where φi’s are the parameters of the model and usually takes values between −1
and 1 in order to keep the series stationary. The error term ǫt is white noise,
which is a sequence of uncorrelated variables with 0 mean and finite variance σ2

that controls how much randomness the process exhibits at each time period t.
The simplest autoregressive models are the AR(0) model, in which the output at
time t is the pure white noise WN(0, σ2), and the AR(1) model. And if we are
to assign the error term a Gaussian distribution, Equation 4.1 can be modified to
an AR(1) model

Xt = φXt−1 + ǫt, ǫt ∼ N (0, σ2).

The value of φ controls the noise structure whereas the magnitude of the standard
deviation σ controls the amplitude of the noise, that is, how strong the noise is.

5. Results and discussion.

5.1. Predictive performance with pure signal. As stated in Sec-
tion 1, the features are extracted from raw signals and the classifiers are im-
plemented on the features. In order to evaluate the predictive performances, a
cross-validation of size 500 is used for each classifier. In detail, we examine the
prediction ability of the classifiers with different numbers of MFCCs, varying from
as small as 12 to as large as 39. The number of filters in the filter bank is chosen
to be 40 in order to extract rich information from the signal. In terms of classi-
fication, we apply linear discriminant function, quadratic discriminant function,
SVM with linear, RBF, and 2nd order polynomial kernels, and k-NN. Table 2
provides the performance results on a frequency domain. In each cell, the first
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value represents the training accuracy, the second value (in italic) the mean pre-
diction accuracy, and the third value (in parentheses) the standard deviation of
the prediction accuracy.

Table 2. The predictive performance on frequency domain of the noise-free signals

# MFCCs LDA QDA SVM-L SVM-RBF SVM-P k-NN

12

0.7606 0.8394 0.7758 0.9000 0.9788 0.9424

0 .7353 0 .8112 0 .7608 0 .8208 0 .8097 0 .8548

(0.0362) (0.0329) (0.0351) (0.0374) (0.0364) (0.0306)

19

0.7818 0.9061 0.8152 0.9485 1.0000 0.9667

0 .7503 0 .8647 0 .7734 0 .8507 0 .8851 0 .9098

(0.0345) (0.0298) (0.0336) (0.0356) (0.0274) (0.0262)

26

0.8636 0.9697 0.8667 0.9758 1.0000 0.9758

0 .8063 0 .9224 0 .8056 0 .9080 0 .9379 0 .9398

(0.0322) (0.0262) (0.0337) (0.0278) (0.0227) (0.0217)

33

0.8970 0.9879 0.9212 0.9848 1.0000 0.9909

0 .8319 0 .9543 0 .8399 0 .9352 0 .9509 0 .9586

(0.0314) (0.0183) (0.0333) (0.0248) (0.0205) (0.0185)

39

0.8970 0.9879 0.9152 0.9758 1.0000 0.9909

0 .8260 0 .9383 0 .8226 0 .9223 0 .9438 0 .9605

(0.0332) (0.0219) (0.0326) (0.0247) (0.0216) (0.0178)

Notice that the training performance exhibits an issue of over-fitting. That is, as
the number of MFCCs increases, the training accuracy provides an over-optimistic
performance. For some classifiers, such as SVM with polynomial kernel, the train-
ing accuracy achieves 100%, which is misleading. In terms of test or out-of-sample
prediction performance, LDA and SVM with a linear kernel are close to each other
and are both inferior than the other classifiers. K-NN demonstrates a better pre-
diction ability, regardless of the number of MFCCs used. Also, it is of interest to
see that there is a relatively big improvement from 12 MFCCs used, which simply
indicates p = 12, to p = 26, and yet this improvement slows down from p = 26 to
p = 39. For some classifiers, the accuracy even drops down slightly, from p = 33
to p = 39.

5.2. Predictive performance with noisy signal. Table 3 gives a com-
parison between the training accuracy and mean prediction accuracy of different
classifiers with AR(0) noisy data. The number of MFCCs is 26. Various levels
of σ are considered. Still, in each cell, the first value represents the training ac-
curacy, the second value (in italic) the mean prediction accuracy and the third
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value (in parentheses) gives the standard deviation of the prediction accuracies.

Table 3. A comparison of predictive performance with AR(0) noisy data

σ LDA QDA SVM-L SVM-RBF SVM-P k-NN

0

0.8636 0.9697 0.8667 0.9818 1.0000 0.9758

0 .8063 0 .9224 0 .8056 0 .9080 0 .9379 0 .9398

(0.0322) (0.0241) (0.0315) (0.0304) (0.0236) (0.0204)

0.001

0.8182 0.8848 0.8364 0.9606 1.0000 0.9485

0 .7708 0 .8267 0 .7604 0 .9025 0 .9048 0 .9052

(0.0344) (0.0314) (0.0323) (0.0260) (0.0267) (0.0270)

0.005

0.8152 0.8636 0.8212 0.9636 1.0000 0.9455

0 .7600 0 .7952 0 .7505 0 .8559 0 .8416 0 .8512

(0.0348) (0.0357) (0.0340) (0.0342) (0.0312) (0.0343)

0.010

0.8030 0.8879 0.8212 0.9394 1.0000 0.9303

0 .7539 0 .7809 0 .7581 0 .8328 0 .8079 0 .8225

(0.0360) (0.0352) (0.0358) (0.0344) (0.0375) (0.0337)

0.015

0.8121 0.9000 0.8121 0.9364 1.0000 0.9061

0 .7611 0 .7782 0 .7548 0 .8023 0 .7809 0 .8063

(0.0332) (0.0342) (0.0361) (0.0362) (0.0364) (0.0346)

Figure 2 gives a corresponding graph of the mean predictive accuracy
in Table 3, while Figure 3 plots the decrease of this accuracy compared to the
noise-free case as σ increases.

Though the increment of noise does have an impact on the classifiers in
terms of training accuracy, it is of importance to see that such impact is not as
strong as the one in terms of prediction accuracy. That is, when the noise has a
relatively large amplitude, the training accuracy exhibits strongly the feature of
false optimism. This can be easily demonstrated by the classifier of SVM with
a polynomial kernel. All training accuracies are exactly equal to 1 regardless of
how much noise is contained in the sound, but the mean prediction accuracy drops
from 93% to 78% as σ increases. It is obvious that the prediction performance
would decrease as the noise in the sound gets stronger. Also, although the mean
predictive accuracy decreases for all classifiers, it is of interest to see that classi-
fiers like LDA and SVM with the linear kernel do not degrade as much as other
classifiers.

Moreover, one may suspect that the performance may be affected by the
various types of noise, at least within the class of AR(p) models. Another mod-
ification of the study is implemented by assigning AR(1) noise, instead of pure
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Fig. 2. A comparison of mean prediction accuracy with noisy signals

Fig. 3. Decrease mean prediction accuracy with noisy signals

white noise, to the data. The parameter φ is controlled at different levels between
0 and 1. Table 4 provides the result of the prediction accuracy with AR(1) noise
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when the magnitude σ is fixed at 0.010. Comparing to Table 3, it seems that the

Table 4. A comparison of predictive performance with AR(1) noisy data

φ LDA QDA SVM-L SVM-RBF SVM-P k-NN

0.1 0.7642 0.7811 0.7483 0.8311 0.8037 0.8222

0.3 0.7581 0.7843 0.7480 0.8199 0.8233 0.8268

0.5 0.7604 0.7714 0.7633 0.8120 0.8054 0.8152

0.7 0.7330 0.7639 0.7512 0.8370 0.8205 0.8125

0.9 0.7424 0.7863 0.7774 0.8313 0.8104 0.8032

structure of the noise does not impact the performance, at least in terms of pre-
diction accuracy. Also, different levels of autocorrelation do not have a significant
impact to the predictive performance either.

6. Conclusion. We have demonstrated that the predictive performance
of accent recognition with certain classifiers and features being extracted using
MFCCs deteriorates when the signals are contaminated by noise. Comparing to
the performance with noise-free signals, the accuracy drops 15% to 20% as the
noise gets stronger. The possible reasons lie both on the stage of feature extrac-
tion and on pattern recognition. Though it is natural that the prediction accu-
racy would decrease as the data becomes noisy, such decay seems to be somewhat
amplified by the technique of MFCC. In other words, the rich features being ex-
tracted from the signal do not necessarily represent the signal itself, but represent
the noise instead. Such decline may also come from pattern recognition, where
some classifiers are not robust to noise. Also, it is of interest to notice that the
predictive performance relies more on the magnitude of the noise than its struc-
ture. Thus, in performing accent recognition with noisy signals, certain denoising
techniques should be added in the step of feature extraction to at least reduce the
noise to a level that cannot have a strong impact to the learning performance.
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